Michael Rowley
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael Rowley.
Journal of Medicinal Chemistry | 2008
Vincenzo Summa; Alessia Petrocchi; Fabio Bonelli; Benedetta Crescenzi; Monica Donghi; Marco Ferrara; Fabrizio Fiore; Cristina Gardelli; Odalys Gonzalez Paz; Daria J. Hazuda; Philip Jones; Olaf Kinzel; Ralph Laufer; Edith Monteagudo; Ester Muraglia; Emanuela Nizi; Federica Orvieto; Paola Pace; Giovanna Pescatore; Rita Scarpelli; Kara A. Stillmock; Marc Witmer; Michael Rowley
Human immunodeficiency virus type-1 (HIV-1) integrase is one of the three virally encoded enzymes required for replication and therefore a rational target for chemotherapeutic intervention in the treatment of HIV-1 infection. We report here the discovery of Raltegravir, the first HIV-integrase inhibitor approved by FDA for the treatment of HIV infection. It derives from the evolution of 5,6-dihydroxypyrimidine-4-carboxamides and N-methyl-4-hydroxypyrimidinone-carboxamides, which exhibited potent inhibition of the HIV-integrase catalyzed strand transfer process. Structural modifications on these molecules were made in order to maximize potency as HIV-integrase inhibitors against the wild type virus, a selection of mutants, and optimize the selectivity, pharmacokinetic, and metabolic profiles in preclinical species. The good profile of Raltegravir has enabled its progression toward the end of phase III clinical trials for the treatment of HIV-1 infection and culminated with the FDA approval as the first HIV-integrase inhibitor for the treatment of HIV-1 infection.
Journal of Virology | 2003
Licia Tomei; Sergio Altamura; Linda Bartholomew; Antonino Biroccio; Alessandra Ceccacci; Laura Pacini; Frank Narjes; Nadia Gennari; Monica Bisbocci; Ilario Incitti; Laura Orsatti; Steven Harper; Ian Stansfield; Michael Rowley; Raffaele De Francesco; Giovanni Migliaccio
ABSTRACT The RNA-dependent RNA polymerase of hepatitis C virus (HCV) is the catalytic subunit of the viral RNA amplification machinery and is an appealing target for the development of new therapeutic agents against HCV infection. Nonnucleoside inhibitors based on a benzimidazole scaffold have been recently reported. Compounds of this class are efficient inhibitors of HCV RNA replication in cell culture, thus providing attractive candidates for further development. Here we report the detailed analysis of the mechanism of action of selected benzimidazole inhibitors. Kinetic data and binding experiments indicated that these compounds act as allosteric inhibitors that block the activity of the polymerase prior to the elongation step. Escape mutations that confer resistance to these compounds map to proline 495, a residue located on the surface of the polymerase thumb domain and away from the active site. Substitution of this residue is sufficient to make the HCV enzyme and replicons resistant to the inhibitors. Interestingly, proline 495 lies in a recently identified noncatalytic GTP-binding site, thus validating it as a potential allosteric site that can be targeted by small-molecule inhibitors of HCV polymerase.
Antimicrobial Agents and Chemotherapy | 2012
Vincenzo Summa; Steven W. Ludmerer; John A. McCauley; Christine Fandozzi; Christine Burlein; Giuliano Claudio; Paul J. Coleman; Jillian DiMuzio; Marco Ferrara; Marcello Di Filippo; Adam T. Gates; Donald J. Graham; Steven Harper; Daria J. Hazuda; Carolyn McHale; Edith Monteagudo; Vincenzo Pucci; Michael Rowley; Michael T. Rudd; Aileen Soriano; Mark W. Stahlhut; Joseph P. Vacca; David B. Olsen; Nigel Liverton; Steven S. Carroll
ABSTRACT HCV NS3/4a protease inhibitors are proven therapeutic agents against chronic hepatitis C virus infection, with boceprevir and telaprevir having recently received regulatory approval as add-on therapy to pegylated interferon/ribavirin for patients harboring genotype 1 infections. Overcoming antiviral resistance, broad genotype coverage, and a convenient dosing regimen are important attributes for future agents to be used in combinations without interferon. In this communication, we report the preclinical profile of MK-5172, a novel P2-P4 quinoxaline macrocyclic NS3/4a protease inhibitor currently in clinical development. The compound demonstrates subnanomolar activity against a broad enzyme panel encompassing major hepatitis C virus (HCV) genotypes as well as variants resistant to earlier protease inhibitors. In replicon selections, MK-5172 exerted high selective pressure, which yielded few resistant colonies. In both rat and dog, MK-5172 demonstrates good plasma and liver exposures, with 24-h liver levels suggestive of once-daily dosing. When administered to HCV-infected chimpanzees harboring chronic gt1a or gt1b infections, MK-5172 suppressed viral load between 4 to 5 logs at a dose of 1 mg/kg of body weight twice daily (b.i.d.) for 7 days. Based on its preclinical profile, MK-5172 is anticipated to be broadly active against multiple HCV genotypes and clinically important resistance variants and highly suited for incorporation into newer all-oral regimens.
Journal of Medicinal Chemistry | 2009
Philip Jones; Sergio Altamura; Julia K. Boueres; Federica Ferrigno; Massimiliano Fonsi; Claudia Giomini; Stefania Lamartina; Edith Monteagudo; Jesus M. Ontoria; Maria Vittoria Orsale; Maria Cecilia Palumbi; Silvia Pesci; Giuseppe Roscilli; Rita Scarpelli; Carsten Schultz-Fademrecht; Carlo Toniatti; Michael Rowley
We disclose the development of a novel series of 2-phenyl-2H-indazole-7-carboxamides as poly(ADP-ribose)polymerase (PARP) 1 and 2 inhibitors. This series was optimized to improve enzyme and cellular activity, and the resulting PARP inhibitors display antiproliferation activities against BRCA-1 and BRCA-2 deficient cancer cells, with high selectivity over BRCA proficient cells. Extrahepatic oxidation by CYP450 1A1 and 1A2 was identified as a metabolic concern, and strategies to improve pharmacokinetic properties are reported. These efforts culminated in the identification of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide 56 (MK-4827), which displays good pharmacokinetic properties and is currently in phase I clinical trials. This compound displays excellent PARP 1 and 2 inhibition with IC(50) = 3.8 and 2.1 nM, respectively, and in a whole cell assay, it inhibited PARP activity with EC(50) = 4 nM and inhibited proliferation of cancer cells with mutant BRCA-1 and BRCA-2 with CC(50) in the 10-100 nM range. Compound 56 was well tolerated in vivo and demonstrated efficacy as a single agent in a xenograft model of BRCA-1 deficient cancer.
Journal of Biological Chemistry | 2005
Stefania Di Marco; Cinzia Volpari; Licia Tomei; Sergio Altamura; Steven Harper; Frank Narjes; Uwe Koch; Michael Rowley; Raffaele De Francesco; Giovanni Migliaccio; Andrea Carfi
The hepatitis C virus (HCV) polymerase is required for replication of the viral genome and is a key target for therapeutic intervention against HCV. We have determined the crystal structures of the HCV polymerase complexed with two indole-based allosteric inhibitors at 2.3- and 2.4-Å resolution. The structures show that these inhibitors bind to a site on the surface of the thumb domain. A cyclohexyl and phenyl ring substituents, bridged by an indole moiety, fill two closely spaced pockets, whereas a carboxylate substituent forms a salt bridge with an exposed arginine side chain. Interestingly, in the apoenzyme, the inhibitor binding site is occupied by a small α-helix at the tip of the N-terminal loop that connects the fingers and thumb domains. Thus, these molecules inhibit the enzyme by preventing formation of intramolecular contacts between these two domains and consequently precluding their coordinated movements during RNA synthesis. Our structures identify a novel mechanism by which a new class of allosteric inhibitors inhibits the HCV polymerase and open the way to the development of novel antiviral agents against this clinically relevant human pathogen.
ACS Medicinal Chemistry Letters | 2012
Steven Harper; John A. McCauley; Michael T. Rudd; Marco Ferrara; Marcello DiFilippo; Benedetta Crescenzi; Uwe Koch; Alessia Petrocchi; M. Katharine Holloway; John W. Butcher; Joseph J. Romano; Kimberly J. Bush; Kevin F. Gilbert; Charles J. Mcintyre; Kevin Nguyen; Emanuela Nizi; Steven S. Carroll; Steven W. Ludmerer; Christine Burlein; Jillian DiMuzio; Donald J. Graham; Carolyn McHale; Mark Stahlhut; David B. Olsen; Edith Monteagudo; Simona Cianetti; Claudio Giuliano; Vincenzo Pucci; Nicole Trainor; Christine Fandozzi
A new class of HCV NS3/4a protease inhibitors containing a P2 to P4 macrocyclic constraint was designed using a molecular modeling-derived strategy. Building on the profile of previous clinical compounds and exploring the P2 and linker regions of the series allowed for optimization of broad genotype and mutant enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 15 (MK-5172), which is active against genotype 1-3 NS3/4a and clinically relevant mutant enzymes and has good plasma exposure and excellent liver exposure in multiple species.
Bioorganic & Medicinal Chemistry Letters | 2008
Philip Jones; Sergio Altamura; Raffaele De Francesco; Paola Gallinari; Armin Lahm; Petra Neddermann; Michael Rowley; Sergio Serafini; Christian Steinkühler
It has been widely debated whether class IIa HDACs have catalytic deacetylase activity, and whether this plays any part in controlling gene expression. Herein, it has been demonstrated that class IIa HDACs isolated from mammalian cells are contaminated with other deacetylases, but can be prepared cleanly in Escherichia coli. These bacteria preparations have weak but measurable deacetylase activity. The low efficiency can be restored either by: mutation of an active site histidine to tyrosine, or by the use of a non-acetylated lysine substrate, allowing the development of assays to identify class IIa HDAC inhibitors.
Tetrahedron | 1989
Ian Fleming; Michael Rowley; Purificación Cuadrado; Ana M. González-Nogal
Abstract The stoichiometric silyl-cupration of allene 7, followed directly by treating the intermediate cuprate with a proton, with a range of carbon electrophiles, and with chlorine gives the vinylsilanes 8–13. Alternatively, when iodine is the electrophile, the product is the vinyl iodide 16. This can then be metallated and treated with a proton or a range of carbon electrophiles to give the allylsilanes 18–21. More-substituted allenes also undergo silyl-cupration followed by protonation, phenylallenes giving vinylsilanes, and alkylallenes giving, on the whole, allylsilanes. Stoichiometric stannyl-cupration of allenes takes place, with similar but less reliable regiocontrol to that of the corresponding silyl-cupration.
Journal of Medicinal Chemistry | 2011
Frank Narjes; Benedetta Crescenzi; Marco Ferrara; Jörg Habermann; Stefania Colarusso; Maria del Rosario Rico Ferreira; Ian Stansfield; Angela Mackay; Immacolata Conte; Caterina Ercolani; Simone Zaramella; Maria-Cecilia Palumbi; Philip Meuleman; Geert Leroux-Roels; Claudio Giuliano; Fabrizio Fiore; Stefania Di Marco; Paola Baiocco; Uwe Koch; Giovanni Migliaccio; Sergio Altamura; Ralph Laufer; Raffaele De Francesco; Michael Rowley
Infections caused by hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. The polymerase of HCV is responsible for the replication of viral genome and has been a prime target for drug discovery efforts. Here, we report on the further development of tetracyclic indole inhibitors, binding to an allosteric site on the thumb domain. Structure-activity relationship (SAR) studies around an indolo-benzoxazocine scaffold led to the identification of compound 33 (MK-3281), an inhibitor with good potency in the HCV subgenomic replication assay and attractive molecular properties suitable for a clinical candidate. The compound caused a consistent decrease in viremia in vivo using the chimeric mouse model of HCV infection.
Tetrahedron Letters | 1988
Michael Rowley; Yoshito Kishi
Abstract The tricyclic ketone 14, an ophiobolin analogue lacking only the C-ring side chain, was synthesized in optically active form; the key step was the intramolecular NiCl2/CrCl2 mediated coupling of 10 to yield 11.