Edoardo Gaude
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edoardo Gaude.
Nature | 2016
Marco Sciacovelli; Emanuel Gonçalves; Tim Johnson; Vincent Zecchini; Ana Sofia Henriques da Costa; Edoardo Gaude; Alizée Vercauteren Drubbel; Sebastian Julian Theobald; Sandra Riekje Abbo; Maxine Gia Binh Mg Tran; Vinothini Rajeeve; Simone Cardaci; Sarah K Foster; Haiyang Yun; Pedro R. Cutillas; Anne Warren; Vincent Jeyaseelan Gnanapragasam; Eyal Gottlieb; Kristian Franze; Brian J. P. Huntly; Eamonn R. Maher; Patrick H. Maxwell; Julio Saez-Rodriguez; Christian Frezza
Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.
Cancer and Metabolism | 2014
Edoardo Gaude; Christian Frezza
Cancer is a heterogeneous set of diseases characterized by different molecular and cellular features. Over the past decades, researchers have attempted to grasp the complexity of cancer by mapping the genetic aberrations associated with it. In these efforts, the contribution of mitochondria to the pathogenesis of cancer has tended to be neglected. However, more recently, a growing body of evidence suggests that mitochondria play a key role in cancer. In fact, dysfunctional mitochondria not only contribute to the metabolic reprogramming of cancer cells but they also modulate a plethora of cellular processes involved in tumorigenesis. In this review, we describe the link between mutations to mitochondrial enzymes and tumor formation. We also discuss the hypothesis that mutations to mitochondrial and nuclear DNA could cooperate to promote the survival of cancer cells in an evolving metabolic landscape.
Nature | 2016
Emma M. Kerr; Edoardo Gaude; Frances K. Turrell; Christian Frezza; Carla P. Martins
The RAS/MAPK (mitogen-activated protein kinase) signalling pathway is frequently deregulated in non-small-cell lung cancer, often through KRAS activating mutations. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations. We recently showed that advanced lung tumours from KrasG12D/+;p53-null mice frequently exhibit KrasG12D allelic enrichment (KrasG12D/Kraswild-type > 1) (ref. 7), implying that mutant Kras copy gains are positively selected during progression. Here we show, through a comprehensive analysis of mutant Kras homozygous and heterozygous mouse embryonic fibroblasts and lung cancer cells, that these genotypes are phenotypically distinct. In particular, KrasG12D/G12D cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the tricarboxylic acid cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous non-small-cell lung cancer cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of KrasG12D copy gain), but not in the corresponding early tumours (KrasG12D heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprising two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated on the basis of their relative mutant allelic content. We also provide the first, to our knowledge, in vivo evidence of metabolic rewiring during lung cancer malignant progression.
The Journal of Clinical Endocrinology and Metabolism | 2014
Graeme R. Clark; Marco Sciacovelli; Edoardo Gaude; D. Walsh; Gail Kirby; Michael A. Simpson; Richard C. Trembath; Jonathan Berg; Emma R. Woodward; Esther Kinning; Patrick Morrison; Christian Frezza; Eamonn R. Maher
CONTEXT At least a third of the patients with pheochromocytoma (PCC) or paraganglioma (PGL) harbor an underlying germline mutation in a known PCC/PGL gene. Mutations in genes (SDHB, SDHD, SDHC, and SDHA) encoding a component of the tricarboxylic acid cycle, succinate dehydrogenase (SDH), are a major cause of inherited PCC and PGL. SDHB mutations are also, albeit less frequently, associated with inherited renal cell carcinoma. Inactivation of SDH and another tricarboxylic acid cycle component, fumarate hydratase (FH), have both been associated with abnormalities of cellular metabolism, responsible for the activation of hypoxic gene response pathways and epigenetic alterations (eg, DNA methylation). However, the clinical phenotype of germline mutations in SDHx genes and FH is usually distinct, with FH mutations classically associated with hereditary cutaneous and uterine leiomyomatosis and renal cell carcinoma, although recently an association with PCC/PGL has been reported. OBJECTIVE AND DESIGN To identify potential novel PCC/PGL predisposition genes, we initially undertook exome resequencing studies in a case of childhood PCC, and subsequently FH mutation analysis in a further 71 patients with PCC, PGL, or head and neck PGL. RESULTS After identifying a candidate FH missense mutation in the exome study, we then detected a further candidate missense mutation (p.Glu53Lys) by candidate gene sequencing. In vitro analyses demonstrated that both missense mutations (p.Cys434Tyr and p.Glu53Lys) were catalytically inactive. CONCLUSIONS These findings 1) confirm that germline FH mutations may present, albeit rarely with PCC or PGL; and 2) extend the clinical phenotype associated with FH mutations to pediatric PCC.
Nature Communications | 2015
Liang Zheng; Simone Cardaci; Livnat Jerby; Elaine D. MacKenzie; Marco Sciacovelli; T. Isaac Johnson; Edoardo Gaude; Ayala King; Joshua Leach; RuAngelie Edrada-Ebel; Ann Hedley; Nicholas A. Morrice; Galbriela Kalna; Karen Blyth; Eytan Ruppin; Christian Frezza; Eyal Gottlieb
Mutations in the tricarboxylic acid (TCA) cycle enzyme fumarate hydratase (FH) are associated with a highly malignant form of renal cancer. We combined analytical chemistry and metabolic computational modelling to investigate the metabolic implications of FH loss in immortalized and primary mouse kidney cells. Here, we show that the accumulation of fumarate caused by the inactivation of FH leads to oxidative stress that is mediated by the formation of succinicGSH, a covalent adduct between fumarate and glutathione. Chronic succination of GSH, caused by the loss of FH, or by exogenous fumarate, leads to persistent oxidative stress and cellular senescence in vitro and in vivo. Importantly, the ablation of p21, a key mediator of senescence, in Fh1-deficient mice resulted in the transformation of benign renal cysts into a hyperplastic lesion, suggesting that fumarate-induced senescence needs to be bypassed for the initiation of renal cancers.
eLife | 2014
Keren Yizhak; Edoardo Gaude; Sylvia E. Le Dévédec; Yedael Y. Waldman; Gideon Y. Stein; Bob van de Water; Christian Frezza; Eytan Ruppin
Utilizing molecular data to derive functional physiological models tailored for specific cancer cells can facilitate the use of individually tailored therapies. To this end we present an approach termed PRIME for generating cell-specific genome-scale metabolic models (GSMMs) based on molecular and phenotypic data. We build >280 models of normal and cancer cell-lines that successfully predict metabolic phenotypes in an individual manner. We utilize this set of cell-specific models to predict drug targets that selectively inhibit cancerous but not normal cell proliferation. The top predicted target, MLYCD, is experimentally validated and the metabolic effects of MLYCD depletion investigated. Furthermore, we tested cell-specific predicted responses to the inhibition of metabolic enzymes, and successfully inferred the prognosis of cancer patients based on their PRIME-derived individual GSMMs. These results lay a computational basis and a counterpart experimental proof of concept for future personalized metabolic modeling applications, enhancing the search for novel selective anticancer therapies. DOI: http://dx.doi.org/10.7554/eLife.03641.001
Methods in Enzymology | 2014
Marco Sciacovelli; Edoardo Gaude; Mika Hilvo; Christian Frezza
Cancer cells exhibit profound metabolic alterations, allowing them to fulfill the metabolic needs that come with increased proliferation and additional facets of malignancy. Such a metabolic transformation is orchestrated by the genetic changes that drive tumorigenesis, that is, the activation of oncogenes and/or the loss of oncosuppressor genes, and further shaped by environmental cues, such as oxygen concentration and nutrient availability. Understanding this metabolic rewiring is essential to elucidate the fundamental mechanisms of tumorigenesis as well as to find novel, therapeutically exploitable liabilities of malignant cells. Here, we describe key features of the metabolic transformation of cancer cells, which frequently include the switch to aerobic glycolysis, a profound mitochondrial reprogramming, and the deregulation of lipid metabolism, highlighting the notion that these pathways are not independent but rather cooperate to sustain proliferation. Finally, we hypothesize that only those genetic defects that effectively support anabolism are selected in the course of tumor progression, implying that cancer-associated mutations may undergo a metabolically convergent evolution.
Nature Materials | 2016
Darren Rodenhizer; Edoardo Gaude; Dan Cojocari; Radhakrishnan Mahadevan; Christian Frezza; Bradly G. Wouters; Alison P. McGuigan
The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional (3D) tumours. Here, we describe an engineered model to assemble 3D tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snap-shot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia.
Nucleic Acids Research | 2016
Payam A. Gammage; Edoardo Gaude; Lindsey Van Haute; Pedro Rebelo-Guiomar; Christopher B. Jackson; Joanna Rorbach; Marcin L. Pekalski; Alan J. Robinson; Marine Charpentier; Jean-Paul Concordet; Christian Frezza; Michal Minczuk
Mitochondrial diseases are frequently associated with mutations in mitochondrial DNA (mtDNA). In most cases, mutant and wild-type mtDNAs coexist, resulting in heteroplasmy. The selective elimination of mutant mtDNA, and consequent enrichment of wild-type mtDNA, can rescue pathological phenotypes in heteroplasmic cells. Use of the mitochondrially targeted zinc finger-nuclease (mtZFN) results in degradation of mutant mtDNA through site-specific DNA cleavage. Here, we describe a substantial enhancement of our previous mtZFN-based approaches to targeting mtDNA, allowing near-complete directional shifts of mtDNA heteroplasmy, either by iterative treatment or through finely controlled expression of mtZFN, which limits off-target catalysis and undesired mtDNA copy number depletion. To demonstrate the utility of this improved approach, we generated an isogenic distribution of heteroplasmic cells with variable mtDNA mutant level from the same parental source without clonal selection. Analysis of these populations demonstrated an altered metabolic signature in cells harbouring decreased levels of mutant m.8993T>G mtDNA, associated with neuropathy, ataxia, and retinitis pigmentosa (NARP). We conclude that mtZFN-based approaches offer means for mtDNA heteroplasmy manipulation in basic research, and may provide a strategy for therapeutic intervention in selected mitochondrial diseases.
Oncotarget | 2015
Daniela Catanzaro; Edoardo Gaude; Genny Orso; Carla Giordano; Giulia Guzzo; Andrea Rasola; Eugenio Ragazzi; Laura Caparrotta; Christian Frezza; Monica Montopoli
The mechanisms of cisplatin resistance, one of the major limitations of current chemotherapy, has only partially been described. We previously demonstrated that cisplatin-resistant ovarian cancer cells (C13), are characterized by reduced mitochondrial activity and higher glucose-dependency when compared to the cisplatin-sensitive counterpart (2008). In this work we further characterized the role of metabolic transformation in cisplatin resistance. By using transmitochondrial hybrids we show that metabolic reprogramming of cisplatin-resistant cell is not caused by inherent mtDNA mutations. We also found that C13 cells not only present an increased glucose-uptake and consumption, but also exhibit increased expression and enzymatic activity of the Pentose Phosphate pathway (PPP) enzyme Glucose-6-Phosphate Dehydrogenase (G6PDH). Moreover, we show that cisplatin-resistant cells are more sensitive to G6PDH inhibition. Even if the metabolomic fingerprint of ovarian cancer cells remains to be further elucidated, these findings indicate that PPP offers innovative potential targets to overcome cisplatin resistance.