Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian Frezza is active.

Publication


Featured researches published by Christian Frezza.


Nature | 2013

Succinate is an inflammatory signal that induces IL-1β through HIF-1α

G. M. Tannahill; Anne M. Curtis; J. Adamik; Eva M. Palsson-McDermott; Anne F. McGettrick; Gautam Goel; Christian Frezza; N. J. Bernard; Beth Kelly; Niamh Foley; Liang Zheng; A. Gardet; Z. Tong; S. S. Jany; Sinead C. Corr; M. Haneklaus; B. E. Caffrey; Kerry A. Pierce; Sarah R. Walmsley; F. C. Beasley; Eoin P. Cummins; Nizet; M. Whyte; Cormac T. Taylor; Hening Lin; S. L. Masters; Eyal Gottlieb; V. P. Kelly; Clary B. Clish; P. E. Auron

Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the ‘GABA (γ-aminobutyric acid) shunt’ pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.


Nature Protocols | 2007

Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts

Christian Frezza; Sara Cipolat; Luca Scorrano

Mitochondria participate in key metabolic reactions of the cell and regulate crucial signaling pathways including apoptosis. Although several approaches are available to study mitochondrial function in situ are available, investigating functional mitochondria that have been isolated from different tissues and from cultured cells offers still more unmatched advantages. This protocol illustrates a step-by-step procedure to obtain functional mitochondria with high yield from cells grown in culture, liver and muscle. The isolation procedures described here require 1–2 hours, depending on the source of the organelles. The polarographic analysis can be completed in 1 hour.


Cell | 2006

Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling

Sara Cipolat; Tomasz Rudka; Dieter Hartmann; Veronica Costa; Lutgarde Serneels; Katleen Craessaerts; Kristine Metzger; Christian Frezza; Wim Annaert; Luciano D'Adamio; Carmen Derks; Tim Dejaegere; Luca Pellegrini; Rudi D'Hooge; Luca Scorrano; Bart De Strooper

Rhomboids, evolutionarily conserved integral membrane proteases, participate in crucial signaling pathways. Presenilin-associated rhomboid-like (PARL) is an inner mitochondrial membrane rhomboid of unknown function, whose yeast ortholog is involved in mitochondrial fusion. Parl-/- mice display normal intrauterine development but from the fourth postnatal week undergo progressive multisystemic atrophy leading to cachectic death. Atrophy is sustained by increased apoptosis, both in and ex vivo. Parl-/- cells display normal mitochondrial morphology and function but are no longer protected against intrinsic apoptotic death stimuli by the dynamin-related mitochondrial protein OPA1. Parl-/- mitochondria display reduced levels of a soluble, intermembrane space (IMS) form of OPA1, and OPA1 specifically targeted to IMS complements Parl-/- cells, substantiating the importance of PARL in OPA1 processing. Parl-/- mitochondria undergo faster apoptotic cristae remodeling and cytochrome c release. These findings implicate regulated intramembrane proteolysis in controlling apoptosis.


Cell | 2013

Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency

Sara Cogliati; Christian Frezza; Maria Eugenia Soriano; Tatiana Varanita; Rubén Quintana-Cabrera; Mauro Corrado; Sara Cipolat; Veronica Costa; Alberto Casarin; Ligia C. Gomes; Ester Perales-Clemente; Leonardo Salviati; Patricio Fernández-Silva; José Antonio Enríquez; Luca Scorrano

Summary Respiratory chain complexes assemble into functional quaternary structures called supercomplexes (RCS) within the folds of the inner mitochondrial membrane, or cristae. Here, we investigate the relationship between respiratory function and mitochondrial ultrastructure and provide evidence that cristae shape determines the assembly and stability of RCS and hence mitochondrial respiratory efficiency. Genetic and apoptotic manipulations of cristae structure affect assembly and activity of RCS in vitro and in vivo, independently of changes to mitochondrial protein synthesis or apoptotic outer mitochondrial membrane permeabilization. We demonstrate that, accordingly, the efficiency of mitochondria-dependent cell growth depends on cristae shape. Thus, RCS assembly emerges as a link between membrane morphology and function.


Nature | 2011

Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase

Christian Frezza; Liang Zheng; Ori Folger; Kartik N. Rajagopalan; Elaine D. MacKenzie; Livnat Jerby; Massimo Micaroni; Barbara Chaneton; Julie Adam; Ann Hedley; Gabriela Kalna; Ian Tomlinson; Patrick J. Pollard; Watson Dg; Ralph J. DeBerardinis; Tomer Shlomi; Eytan Ruppin; Eyal Gottlieb

Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid cycle (TCA cycle) that catalyses the hydration of fumarate into malate. Germline mutations of FH are responsible for hereditary leiomyomatosis and renal-cell cancer (HLRCC). It has previously been demonstrated that the absence of FH leads to the accumulation of fumarate, which activates hypoxia-inducible factors (HIFs) at normal oxygen tensions. However, so far no mechanism that explains the ability of cells to survive without a functional TCA cycle has been provided. Here we use newly characterized genetically modified kidney mouse cells in which Fh1 has been deleted, and apply a newly developed computer model of the metabolism of these cells to predict and experimentally validate a linear metabolic pathway beginning with glutamine uptake and ending with bilirubin excretion from Fh1-deficient cells. This pathway, which involves the biosynthesis and degradation of haem, enables Fh1-deficient cells to use the accumulated TCA cycle metabolites and permits partial mitochondrial NADH production. We predicted and confirmed that targeting this pathway would render Fh1-deficient cells non-viable, while sparing wild-type Fh1-containing cells. This work goes beyond identifying a metabolic pathway that is induced in Fh1-deficient cells to demonstrate that inhibition of haem oxygenation is synthetically lethal when combined with Fh1 deficiency, providing a new potential target for treating HLRCC patients.


Nature | 2012

Serine is a natural ligand and allosteric activator of pyruvate kinase M2

Barbara Chaneton; Petra Hillmann; Liang Zheng; Agnes C. L. Martin; Oliver D.K. Maddocks; Achuthanunni Chokkathukalam; Joseph E. Coyle; Andris Jankevics; Finn P. Holding; Karen H. Vousden; Christian Frezza; Marc O'Reilly; Eyal Gottlieb

Cancer cells exhibit several unique metabolic phenotypes that are critical for cell growth and proliferation. Specifically, they overexpress the M2 isoform of the tightly regulated enzyme pyruvate kinase (PKM2), which controls glycolytic flux, and are highly dependent on de novo biosynthesis of serine and glycine. Here we describe a new rheostat-like mechanistic relationship between PKM2 activity and serine biosynthesis. We show that serine can bind to and activate human PKM2, and that PKM2 activity in cells is reduced in response to serine deprivation. This reduction in PKM2 activity shifts cells to a fuel-efficient mode in which more pyruvate is diverted to the mitochondria and more glucose-derived carbon is channelled into serine biosynthesis to support cell proliferation.


Embo Molecular Medicine | 2009

Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function

Vanessa A. Morais; Patrik Verstreken; Anne Roethig; Joél Smet; An Snellinx; Mieke Vanbrabant; Dominik Haddad; Christian Frezza; Wilhelm Mandemakers; Daniela Vogt-Weisenhorn; Rudy Van Coster; Wolfgang Wurst; Luca Scorrano; Bart De Strooper

Mutations of the mitochondrial PTEN (phosphatase and tensin homologue)‐induced kinase1 (PINK1) are important causes of recessive Parkinson disease (PD). Studies on loss of function and overexpression implicate PINK1 in apoptosis, abnormal mitochondrial morphology, impaired dopamine release and motor deficits. However, the fundamental mechanism underlying these various phenotypes remains to be clarified. Using fruit fly and mouse models we show that PINK1 deficiency or clinical mutations impact on the function of Complex I of the mitochondrial respiratory chain, resulting in mitochondrial depolarization and increased sensitivity to apoptotic stress in mammalian cells and tissues. In Drosophila neurons, PINK1 deficiency affects synaptic function, as the reserve pool of synaptic vesicles is not mobilized during rapid stimulation. The fundamental importance of PINK1 for energy maintenance under increased demand is further corroborated as this deficit can be rescued by adding ATP to the synapse. The clinical relevance of our observations is demonstrated by the fact that human wild type PINK1, but not PINK1 containing clinical mutations, can rescue Complex 1 deficiency. Our work suggests that Complex I deficiency underlies, at least partially, the pathogenesis of this hereditary form of PD. As Complex I dysfunction is also implicated in sporadic PD, a convergence of genetic and environmental causes of PD on a similar mitochondrial molecular mechanism appears to emerge.


Current Opinion in Biotechnology | 2015

A roadmap for interpreting (13)C metabolite labeling patterns from cells.

Joerg Martin Buescher; Maciek R. Antoniewicz; Laszlo G. Boros; Shawn C. Burgess; Henri Brunengraber; Clary B. Clish; Ralph J. DeBerardinis; Olivier Feron; Christian Frezza; Bart Ghesquière; Eyal Gottlieb; Karsten Hiller; Russell G. Jones; Jurre J. Kamphorst; Richard G. Kibbey; Alec C. Kimmelman; Jason W. Locasale; Sophia Y. Lunt; Oliver Dk Maddocks; Craig R. Malloy; Christian M. Metallo; Emmanuelle J. Meuillet; Joshua Munger; Katharina Nöh; Joshua D. Rabinowitz; Markus Ralser; Uwe Sauer; Gregory Stephanopoulos; Julie St-Pierre; Daniel A. Tennant

Measuring intracellular metabolism has increasingly led to important insights in biomedical research. (13)C tracer analysis, although less information-rich than quantitative (13)C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting (13)C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments.


Nature | 2016

Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition

Marco Sciacovelli; Emanuel Gonçalves; Tim Johnson; Vincent Zecchini; Ana Sofia Henriques da Costa; Edoardo Gaude; Alizée Vercauteren Drubbel; Sebastian Julian Theobald; Sandra Riekje Abbo; Maxine Gia Binh Mg Tran; Vinothini Rajeeve; Simone Cardaci; Sarah K Foster; Haiyang Yun; Pedro R. Cutillas; Anne Warren; Vincent Jeyaseelan Gnanapragasam; Eyal Gottlieb; Kristian Franze; Brian J. P. Huntly; Eamonn R. Maher; Patrick H. Maxwell; Julio Saez-Rodriguez; Christian Frezza

Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.


PLOS ONE | 2011

Metabolic Profiling of Hypoxic Cells Revealed a Catabolic Signature Required for Cell Survival

Christian Frezza; Liang Zheng; Daniel A. Tennant; Dmitri B. Papkovsky; Barbara A. Hedley; Gabriela Kalna; David G. Watson; Eyal Gottlieb

Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography–mass spectrometry (LC-MS), to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

Collaboration


Dive into the Christian Frezza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Murphy

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Zheng

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

Thomas Krieg

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge