Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edouard de Castro is active.

Publication


Featured researches published by Edouard de Castro.


Nucleic Acids Research | 2012

InterPro in 2011: new developments in the family and domain prediction database

Sarah Hunter; P. D. Jones; Alex L. Mitchell; Rolf Apweiler; Teresa K. Attwood; Alex Bateman; Thomas Bernard; David Binns; Peer Bork; Sarah W. Burge; Edouard de Castro; Penny Coggill; Matthew Corbett; Ujjwal Das; Louise Daugherty; Lauranne Duquenne; Robert D. Finn; Matthew Fraser; Julian Gough; Daniel H. Haft; Nicolas Hulo; Daniel Kahn; Elizabeth Kelly; Ivica Letunic; David M. Lonsdale; Rodrigo Lopez; John Maslen; Craig McAnulla; Jennifer McDowall; Conor McMenamin

InterPro (http://www.ebi.ac.uk/interpro/) is a database that integrates diverse information about protein families, domains and functional sites, and makes it freely available to the public via Web-based interfaces and services. Central to the database are diagnostic models, known as signatures, against which protein sequences can be searched to determine their potential function. InterPro has utility in the large-scale analysis of whole genomes and meta-genomes, as well as in characterizing individual protein sequences. Herein we give an overview of new developments in the database and its associated software since 2009, including updates to database content, curation processes and Web and programmatic interfaces.


Nucleic Acids Research | 2006

ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins

Edouard de Castro; Christian J. A. Sigrist; Alexandre Gattiker; Virginie Bulliard; Petra S. Langendijk-Genevaux; Elisabeth Gasteiger; Amos Marc Bairoch; Nicolas Hulo

ScanProsite——is a new and improved version of the web-based tool for detecting PROSITE signature matches in protein sequences. For a number of PROSITE profiles, the tool now makes use of ProRules—context-dependent annotation templates—to detect functional and structural intra-domain residues. The detection of those features enhances the power of function prediction based on profiles. Both user-defined sequences and sequences from the UniProt Knowledgebase can be matched against custom patterns, or against PROSITE signatures. To improve response times, matches of sequences from UniProtKB against PROSITE signatures are now retrieved from a pre-computed match database. Several output modes are available including simple text views and a rich mode providing an interactive match and feature viewer with a graphical representation of results.


Nucleic Acids Research | 2006

The PROSITE database

Nicolas Hulo; Amos Marc Bairoch; Virginie Bulliard; Lorenzo Cerutti; Edouard de Castro; Petra S. Langendijk-Genevaux; Marco Pagni; Christian J. A. Sigrist

The PROSITE database consists of a large collection of biologically meaningful signatures that are described as patterns or profiles. Each signature is linked to a documentation that provides useful biological information on the protein family, domain or functional site identified by the signature. The PROSITE database is now complemented by a series of rules that can give more precise information about specific residues. During the last 2 years, the documentation and the ScanProsite web pages were redesigned to add more functionalities. The latest version of PROSITE (release 19.11 of September 27, 2005) contains 1329 patterns and 552 profile entries. Over the past 2 years more than 200 domains have been added, and now 52% of UniProtKB/Swiss-Prot entries (release 48.1 of September 27, 2005) have a cross-reference to a PROSITE entry. The database is accessible at .


Nucleic Acids Research | 2010

PROSITE, a protein domain database for functional characterization and annotation

Christian J. A. Sigrist; Lorenzo Cerutti; Edouard de Castro; Petra S. Langendijk-Genevaux; Virginie Bulliard; Amos Marc Bairoch; Nicolas Hulo

PROSITE consists of documentation entries describing protein domains, families and functional sites, as well as associated patterns and profiles to identify them. It is complemented by ProRule, a collection of rules based on profiles and patterns, which increases the discriminatory power of these profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. PROSITE is largely used for the annotation of domain features of UniProtKB/Swiss-Prot entries. Among the 983 (DNA-binding) domains, repeats and zinc fingers present in Swiss-Prot (release 57.8 of 22 September 2009), 696 (∼70%) are annotated with PROSITE descriptors using information from ProRule. In order to allow better functional characterization of domains, PROSITE developments focus on subfamily specific profiles and a new profile building method giving more weight to functionally important residues. Here, we describe AMSA, an annotated multiple sequence alignment format used to build a new generation of generalized profiles, the migration of ScanProsite to Vital-IT, a cluster of 633 CPUs, and the adoption of the Distributed Annotation System (DAS) to facilitate PROSITE data integration and interchange with other sources. The latest version of PROSITE (release 20.54, of 22 September 2009) contains 1308 patterns, 863 profiles and 869 ProRules. PROSITE is accessible at: http://www.expasy.org/prosite/.


Nucleic Acids Research | 2012

ExPASy: SIB bioinformatics resource portal

Panu Artimo; Manohar Jonnalagedda; Konstantin Arnold; Delphine Baratin; Gábor Csárdi; Edouard de Castro; Séverine Duvaud; Volker Flegel; Arnaud Fortier; Elisabeth Gasteiger; Aurélien Grosdidier; Céline Hernandez; Vassilios Ioannidis; Dmitry Kuznetsov; Robin Liechti; Sébastien Moretti; Khaled Mostaguir; Nicole Redaschi; Grégoire Rossier; Ioannis Xenarios; Heinz Stockinger

ExPASy (http://www.expasy.org) has worldwide reputation as one of the main bioinformatics resources for proteomics. It has now evolved, becoming an extensible and integrative portal accessing many scientific resources, databases and software tools in different areas of life sciences. Scientists can henceforth access seamlessly a wide range of resources in many different domains, such as proteomics, genomics, phylogeny/evolution, systems biology, population genetics, transcriptomics, etc. The individual resources (databases, web-based and downloadable software tools) are hosted in a ‘decentralized’ way by different groups of the SIB Swiss Institute of Bioinformatics and partner institutions. Specifically, a single web portal provides a common entry point to a wide range of resources developed and operated by different SIB groups and external institutions. The portal features a search function across ‘selected’ resources. Additionally, the availability and usage of resources are monitored. The portal is aimed for both expert users and people who are not familiar with a specific domain in life sciences. The new web interface provides, in particular, visual guidance for newcomers to ExPASy.


Nucleic Acids Research | 2012

New and continuing developments at PROSITE

Christian J. A. Sigrist; Edouard de Castro; Lorenzo Cerutti; Béatrice A. Cuche; Nicolas Hulo; Alan Bridge; Lydie Bougueleret; Ioannis Xenarios

PROSITE (http://prosite.expasy.org/) consists of documentation entries describing protein domains, families and functional sites, as well as associated patterns and profiles to identify them. It is complemented by ProRule a collection of rules, which increases the discriminatory power of these profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. PROSITE signatures, together with ProRule, are used for the annotation of domains and features of UniProtKB/Swiss-Prot entries. Here, we describe recent developments that allow users to perform whole-proteome annotation as well as a number of filtering options that can be combined to perform powerful targeted searches for biological discovery. The latest version of PROSITE (release 20.85, of 30 August 2012) contains 1308 patterns, 1039 profiles and 1041 ProRules.


Nucleic Acids Research | 2007

The 20 years of PROSITE

Nicolas Hulo; Amos Marc Bairoch; Virginie Bulliard; Lorenzo Cerutti; Béatrice A. Cuche; Edouard de Castro; Corinne Lachaize; Petra S. Langendijk-Genevaux; Christian J. A. Sigrist

PROSITE consists of documentation entries describing protein domains, families and functional sites, as well as associated patterns and profiles to identify them. It is complemented by ProRule, a collection of rules based on profiles and patterns, which increases the discriminatory power of profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. In this article, we describe the implementation of a new method to assign a status to pattern matches, the new PROSITE web page and a new approach to improve the specificity and sensitivity of PROSITE methods. The latest version of PROSITE (release 20.19 of 11 September 2007) contains 1319 patterns, 745 profiles and 764 ProRules. Over the past 2 years, about 200 domains have been added, and now 53% of UniProtKB/Swiss-Prot entries (release 54.2 of 11 September 2007) have a PROSITE match. PROSITE is available on the web at: http://www.expasy.org/prosite/.


Neuron | 2001

Ca2+ Signaling via the Neuronal Calcium Sensor-1 Regulates Associative Learning and Memory in C. elegans

Marie Gomez; Edouard de Castro; Ernesto Guarin; Hiroyuki Sasakura; Atsushi Kuhara; Ikue Mori; Tamas Bartfai; Cornelia I. Bargmann; Patrick Nef

On a radial temperature gradient, C. elegans worms migrate, after conditioning with food, toward their cultivation temperature and move along this isotherm. This experience-dependent behavior is called isothermal tracking (IT). Here we show that the neuron-specific calcium sensor-1 (NCS-1) is essential for optimal IT. ncs-1 knockout animals show major defects in IT behavior, although their chemotactic, locomotor, and thermal avoidance behaviors are normal. The knockout phenotype can be rescued by reintroducing wild-type NCS-1 into the AIY interneuron, a key component of the thermotaxis network. A loss-of-function form of NCS-1 incapable of binding calcium does not restore IT, whereas NCS-1 overexpression enhances IT performance levels, accelerates learning (faster acquisition), and produces a memory with slower extinction. Thus, proper calcium signaling via NCS-1 defines a novel pathway essential for associative learning and memory.


Nucleic Acids Research | 2009

HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot

Tania Lima; Andrea H. Auchincloss; Elisabeth Coudert; Guillaume Keller; Karine Michoud; Catherine Rivoire; Virginie Bulliard; Edouard de Castro; Corinne Lachaize; Delphine Baratin; Isabelle Phan; Lydie Bougueleret; Amos Marc Bairoch

The growth in the number of completely sequenced microbial genomes (bacterial and archaeal) has generated a need for a procedure that provides UniProtKB/Swiss-Prot-quality annotation to as many protein sequences as possible. We have devised a semi-automated system, HAMAP (High-quality Automated and Manual Annotation of microbial Proteomes), that uses manually built annotation templates for protein families to propagate annotation to all members of manually defined protein families, using very strict criteria. The HAMAP system is composed of two databases, the proteome database and the family database, and of an automatic annotation pipeline. The proteome database comprises biological and sequence information for each completely sequenced microbial proteome, and it offers several tools for CDS searches, BLAST options and retrieval of specific sets of proteins. The family database currently comprises more than 1500 manually curated protein families and their annotation templates that are used to annotate proteins that belong to one of the HAMAP families. On the HAMAP website, individual sequences as well as whole genomes can be scanned against all HAMAP families. The system provides warnings for the absence of conserved amino acid residues, unusual sequence length, etc. Thanks to the implementation of HAMAP, more than 200 000 microbial proteins have been fully annotated in UniProtKB/Swiss-Prot (HAMAP website: http://www.expasy.org/sprot/hamap).


Mechanisms of Development | 1996

Olfaction in birds: differential embryonic expression of nine putative odorant receptor genes in the avian olfactory system

Serge Nef; Igor Allaman; Hubert Fiumelli; Edouard de Castro; Patrick Nef

We have isolated nine putative odorant receptor genes from the chick, named COR1 to COR9, that belong to the large multigene family of olfactory G protein-coupled receptors found in the fish, rat, mouse, dog, and human. By combining genomic DNA blot analysis, low stringency library screenings, and several PCR analyses, we were able to detect approximately 20 COR genes in the chick genome highly related to COR1-9. By in situ hybridization of newborn and adult, COR expression was detected only in the olfactory epithelium, and exhibited a random spatial distribution. During development, COR expression was observed as early as embryonic stage E5. Different levels of gene expression were observed for the COR1-9 genes: at E5, COR1-6 expression was high compared to the expression of COR7, COR8, and COR9. Surprisingly, at E5, a row of COR1-6 positive cells probably associated with the olfactory nerve extended outside the olfactory placode, reaching the anterior pole of the developing forebrain. These results suggest that, in addition to their role as putative odorant receptors, some COR may play a role in the development of the avian olfactory system.

Collaboration


Dive into the Edouard de Castro's collaboration.

Top Co-Authors

Avatar

Christian J. A. Sigrist

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Ioannis Xenarios

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Nicolas Hulo

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Amos Marc Bairoch

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Bridge

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Sylvain Poux

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Andrea H. Auchincloss

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Béatrice A. Cuche

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge