Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvain Poux is active.

Publication


Featured researches published by Sylvain Poux.


Nucleic Acids Research | 2012

The UniProt-GO Annotation database in 2011

Emily Dimmer; Rachael P. Huntley; Yasmin Alam-Faruque; Tony Sawford; Claire O'Donovan; María Martín; Benoit Bely; Paul Browne; Wei Mun Chan; Ruth Eberhardt; Michael Gardner; Kati Laiho; D Legge; Michele Magrane; Klemens Pichler; Diego Poggioli; Harminder Sehra; Andrea H. Auchincloss; Kristian B. Axelsen; Marie-Claude Blatter; Emmanuel Boutet; Silvia Braconi-Quintaje; Lionel Breuza; Alan Bridge; Elizabeth Coudert; Anne Estreicher; L Famiglietti; Serenella Ferro-Rojas; Marc Feuermann; Arnaud Gos

The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set.


Molecular and Cellular Biology | 2000

Structure of a Polycomb Response Element and In Vitro Binding of Polycomb Group Complexes Containing GAGA Factor

Béatrice Horard; Christophe Tatout; Sylvain Poux; Vincenzo Pirrotta

ABSTRACT Polycomb response elements (PREs) are regulatory sites that mediate the silencing of homeotic and other genes. The bxd PRE region from the Drosophila Ultrabithorax gene can be subdivided into subfragments of 100 to 200 bp that retain different degrees of PRE activity in vivo. In vitro, embryonic nuclear extracts form complexes containing Polycomb group (PcG) proteins with these fragments. PcG binding to some fragments is dependent on consensus sequences for the GAGA factor. Other fragments lack GAGA binding sites but can still bind PcG complexes in vitro. We show that the GAGA factor is a component of at least some types of PcG complexes and may participate in the assembly of PcG complexes at PREs.


Methods of Molecular Biology | 2016

UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View

Emmanuel Boutet; Damien Lieberherr; Michael Tognolli; Michel Schneider; Parit Bansal; Alan Bridge; Sylvain Poux; Lydie Bougueleret; Ioannis Xenarios

The Universal Protein Resource (UniProt, http://www.uniprot.org ) consortium is an initiative of the SIB Swiss Institute of Bioinformatics (SIB), the European Bioinformatics Institute (EBI) and the Protein Information Resource (PIR) to provide the scientific community with a central resource for protein sequences and functional information. The UniProt consortium maintains the UniProt KnowledgeBase (UniProtKB), updated every 4 weeks, and several supplementary databases including the UniProt Reference Clusters (UniRef) and the UniProt Archive (UniParc).The Swiss-Prot section of the UniProt KnowledgeBase (UniProtKB/Swiss-Prot) contains publicly available expertly manually annotated protein sequences obtained from a broad spectrum of organisms. Plant protein entries are produced in the frame of the Plant Proteome Annotation Program (PPAP), with an emphasis on characterized proteins of Arabidopsis thaliana and Oryza sativa. High level annotations provided by UniProtKB/Swiss-Prot are widely used to predict annotation of newly available proteins through automatic pipelines.The purpose of this chapter is to present a guided tour of a UniProtKB/Swiss-Prot entry. We will also present some of the tools and databases that are linked to each entry.


Toxicon | 2012

The UniProtKB/Swiss-Prot Tox-Prot program: A central hub of integrated venom protein data

Florence Jungo; Lydie Bougueleret; Ioannis Xenarios; Sylvain Poux

Animal toxins are of interest to a wide range of scientists, due to their numerous applications in pharmacology, neurology, hematology, medicine, and drug research. This, and to a lesser extent the development of new performing tools in transcriptomics and proteomics, has led to an increase in toxin discovery. In this context, providing publicly available data on animal toxins has become essential. The UniProtKB/Swiss-Prot Tox-Prot program (http://www.uniprot.org/program/Toxins) plays a crucial role by providing such an access to venom protein sequences and functions from all venomous species. This program has up to now curated more than 5000 venom proteins to the high-quality standards of UniProtKB/Swiss-Prot (release 2012_02). Proteins targeted by these toxins are also available in the knowledgebase. This paper describes in details the type of information provided by UniProtKB/Swiss-Prot for toxins, as well as the structured format of the knowledgebase.


The EMBO Journal | 1996

Hunchback-independent silencing of late Ubx enhancers by a Polycomb Group Response Element.

Sylvain Poux; Corinne Kostic; Vincenzo Pirrotta

Drosophila homeotic genes are kept silent outside of their appropriate expression domains by a repressive chromatin complex formed by the Polycomb Group proteins. In the case of the Ubx gene, it has been proposed that the early repressor HB, binding at enhancers, recruits the Polycomb complex and specifies the domain of repression. We show that some Ubx enhancers are activated after blastoderm. If a Polycomb Response Element (PRE) is combined with such late enhancers, repression of a reporter gene can be established everywhere in the embryo, irrespective of the presence or absence of hunchback protein. If, however, these late enhancers are combined with a Ubx early enhancer, as well as a PRE, repression is established only where the reporter gene was inactive at early stages. These results imply that the Polycomb complex is not dependent on hunchback and suggest that the pattern of silencing reflects rather the state of activity of the gene at the time the Polycomb complex is formed.


Nucleic Acids Research | 2013

HAMAP in 2013, new developments in the protein family classification and annotation system

Ivo Pedruzzi; Catherine Rivoire; Andrea H. Auchincloss; Elisabeth Coudert; Guillaume Keller; Edouard de Castro; Delphine Baratin; Béatrice A. Cuche; Lydie Bougueleret; Sylvain Poux; Nicole Redaschi; Ioannis Xenarios; Alan Bridge

HAMAP (High-quality Automated and Manual Annotation of Proteins—available at http://hamap.expasy.org/) is a system for the classification and annotation of protein sequences. It consists of a collection of manually curated family profiles for protein classification, and associated annotation rules that specify annotations that apply to family members. HAMAP was originally developed to support the manual curation of UniProtKB/Swiss-Prot records describing microbial proteins. Here we describe new developments in HAMAP, including the extension of HAMAP to eukaryotic proteins, the use of HAMAP in the automated annotation of UniProtKB/TrEMBL, providing high-quality annotation for millions of protein sequences, and the future integration of HAMAP into a unified system for UniProtKB annotation, UniRule. HAMAP is continuously updated by expert curators with new family profiles and annotation rules as new protein families are characterized. The collection of HAMAP family classification profiles and annotation rules can be browsed and viewed on the HAMAP website, which also provides an interface to scan user sequences against HAMAP profiles.


Nucleic Acids Research | 2015

HAMAP in 2015: updates to the protein family classification and annotation system

Ivo Pedruzzi; Catherine Rivoire; Andrea H. Auchincloss; Elisabeth Coudert; Guillaume Keller; Edouard de Castro; Delphine Baratin; Béatrice A. Cuche; Lydie Bougueleret; Sylvain Poux; Nicole Redaschi; Ioannis Xenarios; Alan Bridge

HAMAP (High-quality Automated and Manual Annotation of Proteins—available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm.


Database | 2014

Expert curation in UniProtKB: a case study on dealing with conflicting and erroneous data

Sylvain Poux; Michele Magrane; Cecilia N. Arighi; Alan Bridge; Claire O’Donovan; Kati Laiho

UniProtKB/Swiss-Prot provides expert curation with information extracted from literature and curator-evaluated computational analysis. As knowledgebases continue to play an increasingly important role in scientific research, a number of studies have evaluated their accuracy and revealed various errors. While some are curation errors, others are the result of incorrect information published in the scientific literature. By taking the example of sirtuin-5, a complex annotation case, we will describe the curation procedure of UniProtKB/Swiss-Prot and detail how we report conflicting information in the database. We will demonstrate the importance of collaboration between resources to ensure curation consistency and the value of contributions from the user community in helping maintain error-free resources. Database URL: www.uniprot.org


Database | 2015

The Confidence Information Ontology: A Step Towards a Standard for Asserting Confidence in Annotations

Frederic B. Bastian; Marcus C. Chibucos; Pascale Gaudet; Michelle G. Giglio; Gemma L. Holliday; Hong Huang; Suzanna E. Lewis; Anne Niknejad; Sandra Orchard; Sylvain Poux; Nives Škunca; Marc Robinson-Rechavi

Biocuration has become a cornerstone for analyses in biology, and to meet needs, the amount of annotations has considerably grown in recent years. However, the reliability of these annotations varies; it has thus become necessary to be able to assess the confidence in annotations. Although several resources already provide confidence information about the annotations that they produce, a standard way of providing such information has yet to be defined. This lack of standardization undermines the propagation of knowledge across resources, as well as the credibility of results from high-throughput analyses. Seeded at a workshop during the Biocuration 2012 conference, a working group has been created to address this problem. We present here the elements that were identified as essential for assessing confidence in annotations, as well as a draft ontology—the Confidence Information Ontology—to illustrate how the problems identified could be addressed. We hope that this effort will provide a home for discussing this major issue among the biocuration community. Tracker URL: https://github.com/BgeeDB/confidence-information-ontology Ontology URL: https://raw.githubusercontent.com/BgeeDB/confidence-information-ontology/master/src/ontology/cio-simple.obo


Genetica | 2003

Assembly of Polycomb Complexes and Silencing Mechanisms

Vincenzo Pirrotta; Sylvain Poux; Raffaella Melfi; Maxim Pilyugin

Polycomb complexes assemble at their target sites and silence neighboring genes when these are not actively transcribed. The action of these complexes and of Trithorax complexes bound to the Polycomb Response Element establish alternative silent or derepressed states that are remembered through cell division and maintained for the rest of development. Recent results that may help explain the properties of these states are reviewed.

Collaboration


Dive into the Sylvain Poux's collaboration.

Top Co-Authors

Avatar

Alan Bridge

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Ioannis Xenarios

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Nicole Redaschi

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea H. Auchincloss

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Edouard de Castro

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Maria Livia Famiglietti

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Chantal Hulo

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Lionel Breuza

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge