Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edouard Pesquet is active.

Publication


Featured researches published by Edouard Pesquet.


FEBS Letters | 2003

New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element

Barthélémy Tournier; Maria Theresa Sanchez-Ballesta; Brian Jones; Edouard Pesquet; Farid Regad; Alain Latché; Jean-Claude Pech; Mondher Bouzayen

Four new members of the ERF (ethylene‐response factor) family of plant‐specific DNA‐binding (GCC box) factors were isolated from tomato fruit (LeERF1–4). Phylogenetic analysis indicated that LeERF2 belongs to a new ERF class, characterized by a conserved N‐terminal signature sequence. Expression patterns and cis/trans binding affinities differed between the LeERFs. Combining experimental data and modeled three‐dimensional analysis, it was shown that binding affinity of the LeERFs was affected by both the variation of nucleotides surrounding the DNA cis‐element sequence and the nature of critical amino acid residues within the ERF domain.


The Plant Cell | 2007

In Vivo Visualization of Mg-ProtoporphyrinIX, a Coordinator of Photosynthetic Gene Expression in the Nucleus and the Chloroplast

Elisabeth Ankele; Peter Kindgren; Edouard Pesquet; Åsa Strand

The photosynthetic apparatus is composed of proteins encoded by genes from both the nucleus and the chloroplast. To ensure that the photosynthetic complexes are assembled stoichiometrically and to enable their rapid reorganization in response to a changing environment, the plastids emit signals that regulate nuclear gene expression to match the status of the plastids. One of the plastid signals, the chlorophyll intermediate Mg-ProtoporphyrinIX (Mg-ProtoIX) accumulates under stress conditions and acts as a negative regulator of photosynthetic gene expression. By taking advantage of the photoreactive property of tetrapyrroles, Mg-ProtoIX could be visualized in the cells using confocal laser scanning spectroscopy. Our results demonstrate that Mg-ProtoIX accumulated both in the chloroplast and in the cytosol during stress conditions. Thus, the signaling metabolite is exported from the chloroplast, transmitting the plastid signal to the cytosol. Our results from the Mg-ProtoIX over- and underaccumulating mutants copper response defect and genome uncoupled5, respectively, demonstrate that the expression of both nuclear- and plastid-encoded photosynthesis genes is regulated by the accumulation of Mg-ProtoIX. Thus, stress-induced accumulation of the signaling metabolite Mg-ProtoIX coordinates nuclear and plastidic photosynthetic gene expression.


Development | 2008

ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death.

Luis M. Muñiz; Eugenio G. Minguet; Sunil Kumar Singh; Edouard Pesquet; Francisco Vera-Sirera; Charleen L. Moreau-Courtois; Juan Carbonell; Miguel A. Blázquez; Hannele Tuominen

Cell size and secondary cell wall patterning are crucial for the proper functioning of xylem vessel elements in the vascular tissues of plants. Through detailed anatomical characterization of Arabidopsis thaliana hypocotyls, we observed that mutations in the putative spermine biosynthetic gene ACL5 severely affected xylem specification: the xylem vessel elements of the acl5 mutant were small and mainly of the spiral type, and the normally predominant pitted vessels as well as the xylem fibers were completely missing. The cell-specific expression of ACL5 in the early developing vessel elements, as detected by in situ hybridization and reporter gene analyses, suggested that the observed xylem vessel defects were caused directly by the acl5 mutation. Exogenous spermine prolonged xylem element differentiation and stimulated cell expansion and cell wall elaboration in xylogenic cell cultures of Zinnia elegans, suggesting that ACL5 prevents premature death of the developing vessel elements to allow complete expansion and secondary cell wall patterning. This was further supported by our observations that the vessel elements of acl5 seemed to initiate the cell death program too early and that the xylem defects associated with acl5 could be largely phenocopied by induction of premature, diphtheria toxin-mediated cell death in the ACL5-expressing vessel elements. We therefore provide, for the first time, mechanistic evidence for the function of ACL5 in xylem specification through its action on the duration of xylem element differentiation.


Annals of Botany | 2015

The cell biology of lignification in higher plants

Jaime Barros; Henrik Serk; Irene Granlund; Edouard Pesquet

BACKGROUND Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. SCOPE Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. CONCLUSIONS The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility.


Plant Journal | 2009

A unique program for cell death in xylem fibers of Populus stem

Charleen L. Courtois-Moreau; Edouard Pesquet; Andreas Sjödin; Luis Muñiz; Benjamin Bollhöner; Minako Kaneda; Lacey Samuels; Stefan Jansson; Hannele Tuominen

Maturation of the xylem elements involves extensive deposition of secondary cell-wall material and autolytic processes resulting in cell death. We describe here a unique type of cell-death program in xylem fibers of hybrid aspen (Populus tremula x P. tremuloides) stems, including gradual degradative processes in both the nucleus and cytoplasm concurrently with the phase of active cell-wall deposition. Nuclear DNA integrity, as determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and Comet (single-cell gel electrophoresis) assays, was compromised early during fiber maturation. In addition, degradation of the cytoplasmic contents, as detected by electron microscopy of samples fixed by high-pressure freezing/freeze substitution (HPF-FS), was gradual and resulted in complete loss of the cytoplasmic contents well before the loss of vacuolar integrity, which is considered to be the moment of death. This type of cell death differs significantly from that seen in xylem vessels. The loss of vacuolar integrity, which is thought to initiate cell degradative processes in the xylem vessels, is one of the last processes to occur before the final autolysis of the remaining cell contents in xylem fibers. High-resolution microarray analysis in the vascular tissues of Populus stem, combined with in silico analysis of publicly available data repositories, suggests the involvement of several previously uncharacterized transcription factors, ethylene, sphingolipids and light signaling as well as autophagy in the control of fiber cell death.


The Plant Cell | 2013

Non-Cell-Autonomous Postmortem Lignification of Tracheary Elements in Zinnia elegans

Edouard Pesquet; Bo Zhang; András Gorzsás; Tuula Puhakainen; Henrik Serk; Sacha Escamez; Odile Barbier; Lorenz Gerber; Charleen L. Courtois-Moreau; Edward Alatalo; Lars Paulin; Jaakko Kangasjärvi; Björn Sundberg; Deborah Goffner; Hannele Tuominen

Here, we show that lignification occurs after programmed cell death in xylem tracheary elements (TEs) of Zinnia elegans xylogenic cell cultures. Living, parenchymatic xylem cells surrounding the TEs synthesize and transport lignin monomers and reactive oxygen species to the cell walls of the dead TEs, thereby contributing to TE lignification in a non-cell-autonomous manner. Postmortem lignification of xylem tracheary elements (TEs) has been debated for decades. Here, we provide evidence in Zinnia elegans TE cell cultures, using pharmacological inhibitors and in intact Z. elegans plants using Fourier transform infrared microspectroscopy, that TE lignification occurs postmortem (i.e., after TE programmed cell death). In situ RT-PCR verified expression of the lignin monomer biosynthetic cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase in not only the lignifying TEs but also in the unlignified non-TE cells of Z. elegans TE cell cultures and in living, parenchymatic xylem cells that surround TEs in stems. These cells were also shown to have the capacity to synthesize and transport lignin monomers and reactive oxygen species to the cell walls of dead TEs. Differential gene expression analysis in Z. elegans TE cell cultures and concomitant functional analysis in Arabidopsis thaliana resulted in identification of several genes that were expressed in the non-TE cells and that affected lignin chemistry on the basis of pyrolysis–gas chromatography/mass spectrometry analysis. These data suggest that living, parenchymatic xylem cells contribute to TE lignification in a non-cell-autonomous manner, thus enabling the postmortem lignification of TEs.


Plant Physiology | 2005

Novel Markers of Xylogenesis in Zinnia Are Differentially Regulated by Auxin and Cytokinin

Edouard Pesquet; Philippe Ranocha; Sylvain Legay; Catherine Digonnet; Odile Barbier; Magalie Pichon; Deborah Goffner

The characterization of in vitro xylogenic cultures of zinnia (Zinnia elegans) has led to major discoveries in the understanding of xylem formation in plants. We have constructed and characterized a subtractive library from zinnia cultures enriched in genes that are specifically expressed at the onset of secondary wall deposition and tracheary element (TE) programmed cell death. This Late Xylogenesis Library (LXL) consisted of 236 nonredundant cDNAs, 77% of which encoded novel sequences in comparison with the 17,622 expressed sequence tag sequences publicly available. cDNA arrays were constructed to examine dynamic global gene expression during the course of TE formation. As a first step in dissecting auxin and cytokinin signaling during TE differentiation, macroarrays were probed with cDNAs from cells cultured in different hormonal conditions. Fifty-one percent of the LXL genes were induced by either auxin or cytokinin individually, the large majority by auxin. To determine the potential involvement of these categories of genes in TE differentiation, multiplex in situ-reverse transcription-PCR was performed on cells for two genes encoding putative cell wall proteins: Gibberellin stimulated transcript-1, induced by auxin alone, and expansin 5, induced by cytokinin alone. All transcriptionally active TEs expressed both genes, indicating that, although these genes may not be considered as specific markers for TE differentiation per se, they are nevertheless an integral part of TE differentiation program. Among the non-TE population, four different gene expression-based cell types could be distinguished. Together, these results demonstrate the underlying complexity of hormonal perception and the existence of several different cell types in in vitro TE cell cultures.


New Phytologist | 2011

Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures

Edouard Pesquet; Hannele Tuominen

The exact role of ethylene in xylogenesis remains unclear, but the Zinnia elegans cell culture system provides an excellent model with which to study its role during the differentiation of tracheary elements (TEs) in vitro. Here, we analysed ethylene homeostasis and function during Z. elegans TE differentiation using biochemical, molecular and pharmacological methods. Ethylene evolution was confined to specific stages of TE differentiation. It was found to peak at the time of TE maturation and to correlate with the activity of the ethylene biosynthetic 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The ethylene precursor ACC was exported and accumulated to high concentrations in the extracellular medium, which also displayed a high capacity to convert ACC into ethylene. The effects of adding inhibitors of the ethylene biosynthetic ACC synthase and ACC oxidase enzymes to the TE cultures demonstrated for the first time strict dependence of TE differentiation on ethylene biosynthesis and a stimulatory effect of ethylene on the rate of TE differentiation. In a whole-plant context, our results suggest that ethylene synthesis occurs in the apoplast of the xylem elements and that ethylene participates, in a paracrine manner, in the control of the cambial stem cell pool size during secondary xylem formation.


Plant Physiology | 2006

Galactoglucomannans Increase Cell Population Density and Alter the Protoxylem/Metaxylem Tracheary Element Ratio in Xylogenic Cultures of Zinnia

Anna Beňová-Kákošová; Catherine Digonnet; Florence Goubet; Philippe Ranocha; Alain Jauneau; Edouard Pesquet; Odile Barbier; Zhinong Zhang; Peter Capek; Paul Dupree; Desana Lišková; Deborah Goffner

Xylogenic cultures of zinnia (Zinnia elegans) provide a unique opportunity to study signaling pathways of tracheary element (TE) differentiation. In vitro TEs differentiate into either protoxylem (PX)-like TEs characterized by annular/helical secondary wall thickening or metaxylem (MX)-like TEs with reticulate/scalariform/pitted thickening. The factors that determine these different cell fates are largely unknown. We show here that supplementing zinnia cultures with exogenous galactoglucomannan oligosaccharides (GGMOs) derived from spruce (Picea abies) xylem had two major effects: an increase in cell population density and a decrease in the ratio of PX to MX TEs. In an attempt to link these two effects, the consequence of the plane of cell division on PX-MX differentiation was assessed. Although GGMOs did not affect the plane of cell division per se, they significantly increased the proportion of longitudinally divided cells differentiating into MX. To test the biological significance of these findings, we have determined the presence of mannan-containing oligosaccharides in zinnia cultures in vitro. Immunoblot assays indicated that β-1,4-mannosyl epitopes accumulate specifically in TE-inductive media. These epitopes were homogeneously distributed within the thickened secondary walls of TEs when the primary cell wall was weakly labeled. Using polysaccharide analysis carbohydrate gel electrophoresis, glucomannans were specifically detected in cell walls of differentiating zinnia cultures. Finally, zinnia macroarrays probed with cDNAs from cells cultured in the presence or absence of GGMOs indicated that significantly more genes were down-regulated rather than up-regulated by GGMOs. This study constitutes a major step in the elucidation of signaling mechanisms of PX- and MX-specific genetic programs in zinnia.


Plant Physiology | 2010

Leaf senescence is accompanied by an early disruption of the microtubule network in Arabidopsis.

Olivier Keech; Edouard Pesquet; Laurent Gutierrez; Abdul Ahad; Catherine Bellini; Steven M. Smith; Per Gardeström

The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca2+-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.

Collaboration


Dive into the Edouard Pesquet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge