Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edroaldo Lummertz da Rocha is active.

Publication


Featured researches published by Edroaldo Lummertz da Rocha.


Nature | 2017

Haematopoietic stem and progenitor cells from human pluripotent stem cells

Ryohichi Sugimura; Deepak Kumar Jha; Areum Han; Clara Soria-Valles; Edroaldo Lummertz da Rocha; Yi-Fen Lu; Jeremy A. Goettel; Erik Serrao; R. Grant Rowe; Mohan Malleshaiah; Irene Wong; Patricia Sousa; Ted N. Zhu; Andrea Ditadi; Gordon Keller; Alan Engelman; Scott B. Snapper; Sergei Doulatov; George Q. Daley

A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders.


Nature Medicine | 2016

The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity

Wenzhang Wang; Luwen Wang; Junjie Lu; Hisashi Fujioka; Jingjing Liang; Sirui Jiang; Xiaopin Ma; Zhen Jiang; Edroaldo Lummertz da Rocha; Max Sheng; Heewon Choi; Paul H. Lerou; Hu Li; Xinglong Wang

Genetic mutations in TAR DNA-binding protein 43 (TARDBP, also known as TDP-43) cause amyotrophic lateral sclerosis (ALS), and an increase in the presence of TDP-43 (encoded by TARDBP) in the cytoplasm is a prominent histopathological feature of degenerating neurons in various neurodegenerative diseases. However, the molecular mechanisms by which TDP-43 contributes to ALS pathophysiology remain elusive. Here we have found that TDP-43 accumulates in the mitochondria of neurons in subjects with ALS or frontotemporal dementia (FTD). Disease-associated mutations increase TDP-43 mitochondrial localization. In mitochondria, wild-type (WT) and mutant TDP-43 preferentially bind mitochondria-transcribed messenger RNAs (mRNAs) encoding respiratory complex I subunits ND3 and ND6, impair their expression and specifically cause complex I disassembly. The suppression of TDP-43 mitochondrial localization abolishes WT and mutant TDP-43-induced mitochondrial dysfunction and neuronal loss, and improves phenotypes of transgenic mutant TDP-43 mice. Thus, our studies link TDP-43 toxicity directly to mitochondrial bioenergetics and propose the targeting of TDP-43 mitochondrial localization as a promising therapeutic approach for neurodegeneration.


Cell Reports | 2016

Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity

Tara Vanderweyde; Daniel J. Apicco; Katherine Youmans-Kidder; Peter E.A. Ash; Casey Cook; Edroaldo Lummertz da Rocha; Karen Jansen-West; Alissa A. Frame; Allison Citro; John D. Leszyk; Pavel Ivanov; Jose F. Abisambra; Martin Steffen; Hu Li; Leonard Petrucelli; Benjamin Wolozin

Dendritic mislocalization of microtubule associated protein tau is a hallmark of tauopathies, but the role of dendritic tau is unknown. We now report that tau interacts with the RNA-binding protein (RBP) TIA1 in brain tissue, and we present the brain-protein interactome network for TIA1. Analysis of the TIA1 interactome in brain tissue from wild-type (WT) and tau knockout mice demonstrates that tau is required for normal interactions of TIA1 with proteins linked to RNA metabolism, including ribosomal proteins and RBPs. Expression studies show that tau regulates the distribution of TIA1, and tau accelerates stress granule (SG) formation. Conversely, TIA1 knockdown or knockout inhibits tau misfolding and associated toxicity in cultured hippocampal neurons, while overexpressing TIA1 induces tau misfolding and stimulates neurodegeneration. Pharmacological interventions that prevent SG formation also inhibit tau pathophysiology. These studies suggest that the pathophysiology of tauopathy requires an intimate interaction with RNA-binding proteins.


Nucleic Acids Research | 2016

NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities

Edroaldo Lummertz da Rocha; Choong Yong Ung; Cordelia McGehee; Cristina Correia; Hu Li

Abstract The sequential chain of interactions altering the binary state of a biomolecule represents the ‘information flow’ within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein–protein interactions. Using breast cancer, dyslipidemia and Alzheimers disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes—network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets.


Nature Communications | 2018

Reconstruction of complex single-cell trajectories using CellRouter

Edroaldo Lummertz da Rocha; R. Grant Rowe; Vanessa Lundin; Mohan Malleshaiah; Deepak Kumar Jha; Carlos R. Rambo; Hu Li; Trista E. North; James J. Collins; George Q. Daley

A better understanding of the cell-fate transitions that occur in complex cellular ecosystems in normal development and disease could inform cell engineering efforts and lead to improved therapies. However, a major challenge is to simultaneously identify new cell states, and their transitions, to elucidate the gene expression dynamics governing cell-type diversification. Here, we present CellRouter, a multifaceted single-cell analysis platform that identifies complex cell-state transition trajectories by using flow networks to explore the subpopulation structure of multi-dimensional, single-cell omics data. We demonstrate its versatility by applying CellRouter to single-cell RNA sequencing data sets to reconstruct cell-state transition trajectories during hematopoietic stem and progenitor cell (HSPC) differentiation to the erythroid, myeloid and lymphoid lineages, as well as during re-specification of cell identity by cellular reprogramming of monocytes and B-cells to HSPCs. CellRouter opens previously undescribed paths for in-depth characterization of complex cellular ecosystems and establishment of enhanced cell engineering approaches.Single cell analysis provides insight into cell states and transitions, but to interpret the data, improved algorithms are needed. Here, the authors present CellRouter as a method to analyse single-cell trajectories from RNA-sequencing data, and provide insight into erythroid, myeloid and lymphoid differentiation.


Acta neuropathologica communications | 2018

RNA binding proteins co-localize with small tau inclusions in tauopathy

Brandon Maziuk; Daniel J. Apicco; Anna Lourdes Cruz; Lulu Jiang; Peter E.A. Ash; Edroaldo Lummertz da Rocha; Cheng Zhang; Wai Haung Yu; John D. Leszyk; Jose F. Abisambra; Hu Li; Benjamin Wolozin

The development of insoluble, intracellular neurofibrillary tangles composed of the microtubule-associated protein tau is a defining feature of tauopathies, including Alzheimer’s disease (AD). Accumulating evidence suggests that tau pathology co-localizes with RNA binding proteins (RBPs) that are known markers for stress granules (SGs). Here we used proteomics to determine how the network of tau binding proteins changes with disease in the rTg4510 mouse, and then followed up with immunohistochemistry to identify RNA binding proteins that co-localize with tau pathology. The tau interactome networks revealed striking disease-related changes in interactions between tau and a multiple RBPs, and biochemical fractionation studies demonstrated that many of these proteins including hnRNPA0, EWSR1, PABP and RPL7 form insoluble aggregates as tau pathology develops. Immunohistochemical analysis of mouse and human brain tissues suggest a model of evolving pathological interaction, in which RBPs co-localize with pathological phospho-tau but occur adjacent to larger pathological tau inclusions. We suggest a model in which tau initially interacts with RBPs in small complexes, but evolves into isolated aggregated inclusions as tau pathology matures.


Scientific Reports | 2016

A network-based phenotype mapping approach to identify genes that modulate drug response phenotypes

Junmei Cairns; Choong Yong Ung; Edroaldo Lummertz da Rocha; Cheng Zhang; Cristina Correia; Richard M. Weinshilboum; Liewei Wang; Hu Li

To better address the problem of drug resistance during cancer chemotherapy and explore the possibility of manipulating drug response phenotypes, we developed a network-based phenotype mapping approach (P-Map) to identify gene candidates that upon perturbed can alter sensitivity to drugs. We used basal transcriptomics data from a panel of human lymphoblastoid cell lines (LCL) to infer drug response networks (DRNs) that are responsible for conferring response phenotypes for anthracycline and taxane, two common anticancer agents use in clinics. We further tested selected gene candidates that interact with phenotypic differentially expressed genes (PDEGs), which are up-regulated genes in LCL for a given class of drug response phenotype in triple-negative breast cancer (TNBC) cells. Our results indicate that it is possible to manipulate a drug response phenotype, from resistant to sensitive or vice versa, by perturbing gene candidates in DRNs and suggest plausible mechanisms regulating directionality of drug response sensitivity. More important, the current work highlights a new way to formulate systems-based therapeutic design: supplementing therapeutics that aim to target disease culprits with phenotypic modulators capable of altering DRN properties with the goal to re-sensitize resistant phenotypes.


Stem Cell Research | 2018

Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm

Junjie Lu; Anna Baccei; Edroaldo Lummertz da Rocha; Sean McManus; Lydia Finney; Cheng Zhang; Matthew L. Steinhauser; Hu Li; Paul H. Lerou

Differentiation of human pluripotent stem cells towards definitive endoderm (DE) is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency.


Journal of Pharmacology and Experimental Therapeutics | 2018

TCL1A, a Novel Transcription Factor and a Coregulator of Nuclear Factor κB p65: Single Nucleotide Polymorphism and Estrogen Dependence

Ming Fen Ho; Edroaldo Lummertz da Rocha; Cheng Zhang; James N. Ingle; Paul E. Goss; Lois E. Shepherd; Michiaki Kubo; Liewei Wang; Hu Li; Richard M. Weinshilboum

T-cell leukemia 1A (TCL1A) single-nucleotide polymorphisms (SNPs) have been associated with aromatase inhibitor-induced musculoskeletal adverse events. We previously demonstrated that TCL1A is inducible by estradiol (E2) and plays a critical role in the regulation of cytokines, chemokines, and Toll-like receptors in a TCL1A SNP genotype and estrogen-dependent fashion. Furthermore, TCLIA SNP-dependent expression phenotypes can be “reversed” by exposure to selective estrogen receptor modulators such as 4-hydroxytamoxifen (4OH-TAM). The present study was designed to comprehensively characterize the role of TCL1A in transcriptional regulation across the genome by performing RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) assays with lymphoblastoid cell lines. RNA-seq identified 357 genes that were regulated in a TCL1A SNP- and E2-dependent fashion with expression patterns that were 4OH-TAM reversible. ChIP-seq for the same cells identified 57 TCL1A binding sites that could be regulated by E2 in a SNP-dependent fashion. Even more striking, nuclear factor-κB (NF-κB) p65 bound to those same DNA regions. In summary, TCL1A is a novel transcription factor with expression that is regulated in a SNP- and E2-dependent fashion—a pattern of expression that can be reversed by 4OH-TAM. Integrated RNA-seq and ChIP-seq results suggest that TCL1A also acts as a transcriptional coregulator with NF-κB p65, an important immune system transcription factor.


Cell | 2014

CellNet: network biology applied to stem cell engineering.

Patrick Cahan; Hu Li; Samantha A. Morris; Edroaldo Lummertz da Rocha; George Q. Daley; James J. Collins

Collaboration


Dive into the Edroaldo Lummertz da Rocha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepak Kumar Jha

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Areum Han

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge