Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo B. Fernandez is active.

Publication


Featured researches published by Eduardo B. Fernandez.


Journal of Internet Services and Applications | 2013

An analysis of security issues for cloud computing

Keiko Hashizume; David G. Rosado; Eduardo Fernández-Medina; Eduardo B. Fernandez

Cloud Computing is a flexible, cost-effective, and proven delivery platform for providing business or consumer IT services over the Internet. However, cloud Computing presents an added level of risk because essential services are often outsourced to a third party, which makes it harder to maintain data security and privacy, support data and service availability, and demonstrate compliance. Cloud Computing leverages many technologies (SOA, virtualization, Web 2.0); it also inherits their security issues, which we discuss here, identifying the main vulnerabilities in this kind of systems and the most important threats found in the literature related to Cloud Computing and its environment as well as to identify and relate vulnerabilities and threats with possible solutions.


IEEE Transactions on Computers | 1973

Bounds on the Number of Processors and Time for Multiprocessor Optimal Schedules

Eduardo B. Fernandez; Bertram Bussell

Two problems of importance for the scheduling of multiprocessing systems composed of identical units are discussed in this paper. 1) Given a partially ordered set of computations represented by the vertices of an acyclic directed graph with their associated execution times, find the minimum number of processors in order to execute them in a time not exceeding the length of the critical path of this graph. 2) Determine the minimum time to process this set of computations when a fixed number of processors is available. A unified formulation for lower bounds on the minimum number of processors and on time is presented. These lower bounds are sharper than previously known values and provide a general framework that gives insight for deriving simplified expressions. A new upper bound on the minimum number of processors is presented, which is sharper than the known bounds. The computational aspects of these bounds are also discussed.


international parallel and distributed processing symposium | 2005

Secure and efficient key management in mobile ad hoc networks

Bing Wu; Jie Wu; Eduardo B. Fernandez; Spyros S. Magliveras

In mobile ad hoc networks, due to unreliable wireless media, host mobility and lack of infrastructure, providing secure communications is a big challenge in this unique network environment. Usually cryptography techniques are used for secure communications in wired and wireless networks. The asymmetric cryptography is widely used because of its versatileness (authentication, integrity, and confidentiality) and simplicity for key distribution. However, this approach relies on a centralized framework of public key infrastructure (PKI). The symmetric approach has computation efficiency, yet it suffers from potential attacks on key agreement or key distribution. In fact, any cryptographic means is ineffective if the key management is weak. Key management is a central aspect for security in mobile ad hoc networks. In mobile ad hoc networks, the computational load and complexity for key management is strongly subject to restriction of the nodes available resources and the dynamic nature of network topology. In this paper, we propose a secure and efficient key management framework (SEKM) for mobile ad hoc networks. SEKM builds PKI by applying a secret sharing scheme and an underlying multicast server group. In SEKM, the server group creates a view of the certification authority (CA) and provides certificate update service for all nodes, including the servers themselves. A ticket scheme is introduced for efficient certificate service. In addition, an efficient server group updating scheme is proposed.


The Astrophysical Journal | 2009

MEASURING BARYON ACOUSTIC OSCILLATIONS ALONG THE LINE OF SIGHT WITH PHOTOMETRIC REDSHIFTS: THE PAU SURVEY

N. Benítez; E. Gaztanaga; R. Miquel; Francisco J. Castander; M. Moles; M. Crocce; Alberto Fernandez-Soto; P. Fosalba; Fernando J. Ballesteros; Julia Campa; L. Cardiel-Sas; J. Castilla; D. Cristóbal-Hornillos; Manuel Delfino; Eduardo B. Fernandez; C. Fernández-Sopuerta; Juan Garcia-Bellido; J. A. Lobo; V. J. Martínez; A. Ortiz; A. Pacheco; Silvestre Paredes; María Jesús Pons-Bordería; E. Sanchez; Sebastian F. Sanchez; J. Varela; J. De Vicente

Baryon Acoustic Oscillations (BAOs) provide a standard ruler of known physical length, making it one of the most promising probes of the nature of dark energy (DE). The detection of BAOs as an excess of power in the galaxy distribution at a certain scale requires measuring galaxy positions and redshifts. Transversal (or angular) BAOs measure the angular size of this scale projected in the sky and provide information about the angular distance. Line-of-sight (or radial) BAOs require very precise redshifts, but provide a direct measurement of the Hubble parameter at different redshifts, a more sensitive probe of DE. The main goal of this paper is to show that it is possible to obtain photometric redshifts with enough precision (? z ) to measure BAOs along the line of sight. There is a fundamental limitation as to how much one can improve the BAO measurement by reducing ? z . We show that ? z ~ 0.003(1 + z) is sufficient: a much better precision will produce an oversampling of the BAO peak without a significant improvement on its detection, while a much worse precision will result in the effective loss of the radial information. This precision in redshift can be achieved for bright, red galaxies, featuring a prominent 4000 ? break, by using a filter system comprising about 40 filters, each with a width close to 100 ?, covering the wavelength range from ~4000 to ~8000 ?, supplemented by two broad-band filters similar to the Sloan Digital Sky Survey u and z bands. We describe the practical implementation of this idea, a new galaxy survey project, PAU16Physics of the Accelerating Universe (PAU): http://www.ice.cat/pau., to be carried out with a telescope/camera combination with an etendue about 20 m2 deg2, equivalent to a 2 m telescope equipped with a 6 deg2 field of view camera, and covering 8000 deg2 in the sky in four years. We expect to measure positions and redshifts for over 14 million red, early-type galaxies with L > L and iAB 22.5 in the redshift interval 0.1 < z < 0.9, with a precision ? z < 0.003(1 + z). This population has a number density n 10?3 Mpc?3 h 3 galaxies within the 9 Gpc3 h ?3 volume to be sampled by our survey, ensuring that the error in the determination of the BAO scale is not limited by shot noise. By itself, such a survey will deliver precisions of order 5% in the dark-energy equation of state parameter w, if assumed constant, and can determine its time derivative when combined with future cosmic microwave background measurements. In addition, PAU will yield high-quality redshift and low-resolution spectroscopy for hundreds of millions of other galaxies, including a very significant high-redshift population. The data set produced by this survey will have a unique legacy value, allowing a wide range of astrophysical studies.


Journal of Neural Engineering | 2009

Toward the development of a cortically based visual neuroprosthesis

Richard A. Normann; Bradley A. Greger; Paul A. House; Samuel F. Romero; Francisco J. Pelayo; Eduardo B. Fernandez

Motivated by the success of cochlear implants for deaf patients, we are now facing the goal of creating a visual neuroprosthesis designed to interface with the occipital cortex as a means through which a limited but useful sense of vision could be restored in profoundly blind patients. We review the most important challenges regarding this neuroprosthetic approach and emphasize the need for basic human psychophysical research on the best way of presenting complex stimulating patterns through multiple microelectrodes. Continued research will hopefully lead to the development of and design specifications for the first generation of a cortically based visual prosthesis system.


DBSec | 2004

A Pattern System for Access Control

Torsten Priebe; Eduardo B. Fernandez; Jens Ingo Mehlau; Günther Pernul

In order to develop trustworthy information systems, security aspects should be considered from the early project stages. This is particularly true for authorization and access control services, which decide which users can access which parts of the system and in what ways. Software patterns have been used with success to encapsulate best practices in software design. A good collection of patterns is an invaluable aid in designing new systems by inexperienced developers and is also useful to teach and understand difficult problems. Following in this direction, this paper presents a pattern system to describe authorization and access control models. First, we present a set of patterns that include a basic authorization pattern that is the basis for patterns for the well-established discretionary and role-based access control models. Metadata access control models have appeared recently to address the high flexibility requirements of open, heterogeneous systems, such as enterprise or e-commerce portals. These models are complex and we use the basic patterns to develop a set of patterns for metadata-based access control.


Journal of Neural Engineering | 2005

Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity

Eduardo B. Fernandez; Francisco J. Pelayo; Samuel F. Romero; Markus Bongard; C Marin; Arantxa Alfaro; Lotfi B. Merabet

Clinical applications such as artificial vision require extraordinary, diverse, lengthy and intimate collaborations among basic scientists, engineers and clinicians. In this review, we present the state of research on a visual neuroprosthesis designed to interface with the occipital visual cortex as a means through which a limited, but useful, visual sense could be restored in profoundly blind individuals. We review the most important physiological principles regarding this neuroprosthetic approach and emphasize the role of neural plasticity in order to achieve desired behavioral outcomes. While full restoration of fine detailed vision with current technology is unlikely in the immediate near future, the discrimination of shapes and the localization of objects should be possible allowing blind subjects to navigate in a unfamiliar environment and perhaps even to read enlarged text. Continued research and development in neuroprosthesis technology will likely result in a substantial improvement in the quality of life of blind and visually impaired individuals.


IEEE Transactions on Knowledge and Data Engineering | 1994

A model for evaluation and administration of security in object-oriented databases

Eduardo B. Fernandez; Ehud Gudes; Haiyan Song

The integration of object-oriented programming concepts with databases is one of the most significant advances in the evolution of database systems. Many aspects of such a combination have been studied, but there are few models to provide security for this richly structured information. We develop an authorization model for object-oriented databases. This model consists of a set of policies, a structure for authorization rules, and algorithms to evaluate access requests against the authorization rules. User access policies are based on the concept of inherited authorization applied along the class structure hierarchy. We propose also a set of administrative policies that allow the control of user access and its decentralization. Finally, we study the effect of class structuring changes on authorization. >


Proceedings of the second ACM workshop on Role-based access control | 1997

Determining role rights from use cases

Eduardo B. Fernandez; J. C. Hawkins

We propose a simple and complete method to determine the needed rights for roles in a system. We make use of the concept of use cases, commonly used to determine requirements in object-oriented system development. We extend use cases with rights specifications and we determine all of a role’s rights from the collection of all use cases for the system. This method is in strict accordance with the least privilege principle.


Neuroscience | 2001

High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array.

David J. Warren; Eduardo B. Fernandez; Richard A. Normann

Much of our understanding of the visuotopic organization of striate cortex results from single-electrode penetrations and serial recording of receptive field properties. However, the quality of these maps is limited by imprecision in quantifying electrode position, combining data from multiple laminae, and eye drift during the measurement of the receptive field properties. We have addressed these concerns by using an array of 100 closely spaced microelectrodes to investigate the two-dimensional visuotopic organization of layer IV in cat striate cortex. This array allowed simultaneous measurement of the receptive field properties of multiple single units on a regularly spaced grid. We found the relationship between cortical and visual space to be locally non-conformal: the receptive field locations associated with a closely spaced line of electrodes appeared randomly scattered in visual space. To quantify the scatter, we fitted a linear transformation of electrode sites onto the associated receptive field locations. We found that the distribution of the difference between the predicted receptive field location and the measured location had standard deviations of 0.59 degrees and 0.45 degrees in the horizontal and the vertical axes, respectively. Although individual receptive field positions differed from the predicted locations in a non-conformal sense, the trend across multiple receptive fields followed the maps described elsewhere. We found, on average, that the 13 mm2 of cortex sampled by the array mapped onto a 5.8-degrees) region of visual space. From the scaling of this map and a combination of the statistics of the receptive field size (2.7+/-1.5 degrees) and scatter, we have explored the impact of electrode spacing on the completeness and redundancy in coverage of visual space sampled by an array. The simulation indicated an array with 1.2-mm spacing would completely sample the region of visual space addressed by the array. These results have implications for neuroprosthetic applications. Assuming phosphene organization resembles the visuotopic organization, remapping of visual space may be necessary to accommodate the scatter in phosphene locations.

Collaboration


Dive into the Eduardo B. Fernandez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael VanHilst

Nova Southeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiko Hashizume

Florida Atlantic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomás Lang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge