Eduardo Henrique Silva Sousa
Federal University of Ceará
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eduardo Henrique Silva Sousa.
Biochemistry | 2009
Jason R. Tuckerman; Gonzalo Gonzalez; Eduardo Henrique Silva Sousa; Xuehua Wan; Jennifer A. Saito; Maqsudul Alam; Marie Alda Gilles-Gonzalez
A commonly observed coupling of sensory domains to GGDEF-class diguanylate cyclases and EAL-class phosphodiesterases has long suggested that c-di-GMP synthesizing and degrading enzymes sense environmental signals. Nevertheless, relatively few signal ligands have been identified for these sensors, and even fewer instances of in vitro switching by ligand have been demonstrated. Here we describe an Escherichia coli two-gene operon, dosCP, for control of c-di-GMP by oxygen. In this operon, the gene encoding the oxygen-sensing c-di-GMP phosphodiesterase Ec Dos (here renamed Ec DosP) follows and is translationally coupled to a gene encoding a diguanylate cyclase, here designated DosC. We present the first characterizations of DosC and a detailed study of the ligand-dose response of DosP. Our results show that DosC is a globin-coupled sensor with an apolar but accessible heme pocket that binds oxygen with a K(d) of 20 microM. The response of DosP activation to increasing oxygen concentration is a complex function of its ligand saturation such that over 80% of the activation occurs in solutions that exceed 30% of air saturation (oxygen >75 microM). Finally, we find that DosP and DosC associate into a functional complex. We conclude that the dosCP operon encodes two oxygen sensors that cooperate in the controlled production and removal of c-di-GMP.
Protein Science | 2007
Eduardo Henrique Silva Sousa; Jason R. Tuckerman; Gonzalo Gonzalez; Marie Alda Gilles-Gonzalez
Exposure of Mycobacterium tuberculosis to hypoxia is known to alter the expression of many genes, including ones thought to be involved in latency, via the transcription factor DevR (also called DosR). Two sensory kinases, DosT and DevS (also called DosS), control the activity of DevR. We show that, like DevS, DosT contains a heme cofactor within an N‐terminal GAF domain. For full‐length DosT and DevS, we determined the ligand‐binding parameters and the rates of ATP reaction with the liganded and unliganded states. In both proteins, the heme state was coupled to the kinase such that the unliganded, CO‐bound, and NO‐bound forms were active, but the O2‐bound form was inactive. Oxygen‐bound DosT was unusually inert to oxidation to the ferric state (half life in air >60 h). Though the kinase activity of DosT was unaffected by NO, this ligand bound 5000 times more avidly than O2 to DosT (Kd [NO] ∼5 nM versus Kd [O2] = 26 μM). These results demonstrate direct and specific O2 sensing by proteins in M. tuberculosis and identify for the first time a signal ligand for a sensory kinase from this organism. They also explain why exposure of M. tuberculosis to NO donors under aerobic conditions can give results identical to hypoxia, i.e., NO saturates DosT, preventing O2 binding and yielding an active kinase.
Current Pharmaceutical Design | 2006
Jaim S. Oliveira; Eduardo Henrique Silva Sousa; Osmar Norberto de Souza; lcaro S. Moreira; Diógenes Santiago Santos; Luiz Augusto Basso
Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. The reemergence of tuberculosis as a potential public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, and the proliferation of multi-drug-resistant strains have created a need for the development of new antimycobacterial agents. Mycolic acids, the hallmark of mycobacteria, are high-molecular-weight alpha-alkyl, beta-hydroxy fatty acids, which appear mostly as bound esters in the mycobacterial cell wall. The product of the M. tuberculosis inhA structural gene (InhA) has been shown to be the primary target for isoniazid (INH), the most prescribed drug for active TB and prophylaxis. InhA was identified as an NADH-dependent enoyl-ACP reductase specific for long-chain enoyl thioesters. InhA is a member of the mycobacterial Type II fatty acid biosynthesis system, which elongates acyl fatty acid precursors of mycolic acids. Although the history of chemotherapeutic agent development demonstrates the remarkably successful tinkering of a few structural scaffolds, it also emphasizes the ongoing, cyclical need for innovation. The main focus of our contribution is on new data describing the rationale for the design of a pentacyano(isoniazid)ferrateII compound that requires no KatG-activation, its chemical characterization, in vitro activity studies against WT and INH-resistant I21V M. tuberculosis enoyl reductases, the slow-onset inhibition mechanism of WT InhA by the inorganic complex, and molecular modeling of its interaction with WT InhA. This inorganic complex represents a new class of lead compounds to the development of anti-tubercular agents aiming at inhibition of a validated target.
Chemical Communications | 2004
Jaim S. Oliveira; Eduardo Henrique Silva Sousa; Luiz Augusto Basso; Moises Palaci; Reynaldo Dietze; Diógenes Santiago Santos; Ícaro S. Moreira
The in vitro kinetics of inactivation of both wild-type and I21V InhA enzymes by [FeII(CN)5(INH)]3- indicate that this process requires no activation by KatG, and no need for the presence of NADH. This inorganic complex may represent a new class of lead compounds to the development of anti-tubercular agents aiming at inhibition of a validated target.
FEBS Letters | 2011
Aik-Hong Teh; Jennifer A. Saito; Aida Baharuddin; Jason R. Tuckerman; James S. Newhouse; Masaomi Kanbe; Elizabeth I. Newhouse; Rashidah Abdul Rahim; Frédérique Favier; Claude Didierjean; Eduardo Henrique Silva Sousa; Matthew B. Stott; Peter F. Dunfield; Gonzalo Gonzalez; Marie Alda Gilles-Gonzalez; Nazalan Najimudin; Maqsudul Alam
Hells Gate globin I (HGbI), a heme‐containing protein structurally homologous to mammalian neuroglobins, has been identified from an acidophilic and thermophilic obligate methanotroph, Methylacidiphilum infernorum. HGbI has very high affinity for O2 and shows barely detectable autoxidation in the pH range of 5.2–8.6 and temperature range of 25–50 °C. Examination of the heme pocket by X‐ray crystallography and molecular dynamics showed that conformational movements of Tyr29(B10) and Gln50(E7), as well as structural flexibility of the GH loop and H‐helix, may play a role in modulating its ligand binding behavior. Bacterial HGbIs unique resistance to the sort of extreme acidity that would extract heme from any other hemoglobin makes it an ideal candidate for comparative structure–function studies of the expanding globin superfamily.
Journal of Biological Inorganic Chemistry | 2012
Eduardo Henrique Silva Sousa; Luiz Augusto Basso; Diógenes Santiago Santos; Izaura C.N. Diógenes; Elisane Longhinotti; Luiz Gonzaga de França Lopes; Ícaro S. Moreira
For over a decade, tuberculosis (TB) has been the leading cause of death among infectious diseases. Since the 1950s, isoniazid has been used as a front-line drug in the treatment of TB; however, resistant TB strains have limited its use. The major route of isoniazid resistance relies on KatG enzyme disruption, which does not promote an electron transfer reaction. Here, we investigated the reactivity of isoniazid metal complexes as prototypes for novel self-activating metallodrugs against TB with the aim to overcome resistance. Reactivity studies were conducted with hydrogen peroxide, hexacyanoferrate(III), and aquopentacyanoferrate(III). The latter species showed a preference for the inner-sphere electron transfer reaction pathway. Additionally, electron transfer reaction performed with either free isoniazid or (isoniazid)pentacyanoferrate(II) complex resulted in similar oxidized isoniazid derivatives as observed when the KatG enzyme was used. However, upon metal coordination, a significant enhancement in the formation of isonicotinic acid was observed compared with that of isonicotinamide. These results suggest that the pathway of a carbonyl-centered radical might be favored upon coordination to the Fe(II) owing to the π-back-bonding effect promoted by this metal center; therefore, the isoniazid metal complex could serve as a potential metallodrug. Enzymatic inhibition assays conducted with InhA showed that the cyanoferrate moiety is not the major player involved in this inhibition but the presence of isoniazid is required in this process. Other isoniazid metal complexes, [Ru(CN)5(izd)]3− and [Ru(NH3)5(izd)]2+ (where izd is isoniazid), were also unable to inhibit InhA, supporting our proposed self-activating mechanism of action. We propose that isoniazid reactivity can be rationally modulated by metal coordination chemistry, leading to the development of novel anti-TB metallodrugs.Graphical abstract
Journal of Inorganic Biochemistry | 2014
Eduardo Henrique Silva Sousa; Francisca Gilmara de Mesquita Vieira; Jennifer S. Butler; Luiz Augusto Basso; Diógenes Santiago; Izaura C.N. Diógenes; Luiz Gonzaga de França Lopes; Peter J. Sadler
Tuberculosis has re-emerged as a worldwide threat, which has motivated the development of new drugs. The antituberculosis complex Na3[Fe(CN)5(isoniazid)] (IQG607) in particular is of interest on account of its ability to overcome resistance. IQG607 has the potential for redox-mediated-activation, in which an acylpyridine (isonicotinoyl) radical could be generated without assistance from the mycobacterial KatG enzyme. Here, we have investigated the reactivity of IQG607 toward hydrogen peroxide and superoxide, well-known intracellular oxidizing agents that could play a key role in the redox-mediated-activation of this compound. HPLC, NMR and electronic spectroscopy studies showed a very fast oxidation rate for bound isoniazid, over 460-fold faster than free isoniazid oxidation. A series of EPR spin traps were used for detection of isonicotinoyl and derived radicals bound to iron. This is the first report for an isonicotinoyl radical bound to a metal complex, supported by (14)N and (1)H hyperfine splittings for the POBN and PBN trapped radicals. POBN and PBN exhibited average hyperfine coupling constants of aN=15.6, aH=2.8 and aN=15.4, aH=4.7, respectively, which are in close agreement to the isonicotinoyl radical. Radical generation is thought to play a major role in the mechanism of action of isoniazid and this work provides strong evidence for its production within IQG607, which, along with biological and chemical oxidation data, support a redox-mediated activation mechanism. More generally the concept of redox activation of metallo prodrugs could be applied more widely for the design of therapeutic agents with novel mechanisms of action.
Biochemistry | 2013
Eduardo Henrique Silva Sousa; Jason R. Tuckerman; Ana C.S. Gondim; Gonzalo Gonzalez; Marie Alda Gilles-Gonzalez
FixL is a prototype for heme-based sensors, multidomain proteins that typically couple a histidine protein kinase activity to a heme-binding domain for sensing of diatomic gases such as oxygen, carbon monoxide, and nitric oxide. Despite the relatively well-developed understanding of FixL, the importance of some of its domains has been unclear. To explore the impact of domain-domain interactions on oxygen sensing and signal transduction, we characterized and investigated Rhizobium etli hybrid sensor ReFixL. In ReFixL, the core heme-containing PAS domain and kinase region is preceded by an N-terminal PAS domain of unknown function and followed by a C-terminal receiver domain. The latter resembles a target substrate domain that usually occurs independently of the kinase and contains a phosphorylatable aspartate residue. We isolated the full-length ReFixL as a soluble holoprotein with a single heme b cofactor. Despite a low affinity for oxygen (K(d) for O₂ of 738 μM), the kinase activity was completely switched off by O₂ at concentrations well below the K(d). A deletion of the first PAS domain strongly increased the oxygen affinity but essentially prohibited autophosphorylation, although the truncated protein was competent to accept phosphoryl groups in trans. These studies provide new insights into histidyl-aspartyl phosphoryl transfers in two-component systems and suggest that the control of ligand affinity and signal transduction by PAS domains can be direct or indirect.
Pharmacology, Biochemistry and Behavior | 2013
Larissa Staurengo-Ferrari; Sandra S. Mizokami; Jean Jerley Nogueira da Silva; Francisco O.N. da Silva; Eduardo Henrique Silva Sousa; Luiz G. da França; Mariana L. Matuoka; Sandra R. Georgetti; Marcela M. Baracat; Rubia Casagrande; Wander Rogério Pavanelli; Waldiceu A. Verri
The activation of nitric oxide (NO) production is an analgesic mechanism shared by drugs such as morphine and diclofenac. Therefore, the controlled release of low amounts of NO seems to be a promising analgesic approach. In the present study, the antinociceptive effect of the ruthenium NO donor [Ru(bpy)2(NO)SO3](PF6) (complex I) was investigated. It was observed that complex I inhibited in a dose (0.3-10mg/kg)-dependent manner the acetic acid-induced writhing response. At the dose of 1mg/kg, complex I inhibited the phenyl-p-benzoquinone-induced writhing response and formalin- and complete Freunds adjuvant-induced licking and flinch responses. Additionally, complex I also inhibited transient receptor potential cation channel subfamily V member 1 (TRPV1)-dependent overt pain-like behavior induced by capsaicin. Complex I also inhibited the carrageenin-induced mechanical hyperalgesia and increase of myeloperoxidase activity (MPO) in paw skin samples. The inhibitory effect of complex I in the carrageenin-induced hyperalgesia, MPO activity and formalin was prevented by the treatment with ODQ, KT5823 and glybenclamide, indicating that complex I inhibits inflammatory hyperalgesia by activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. The present study demonstrates the efficacy of a novel ruthenium NO donor and its analgesic mechanisms.
Methods in Enzymology | 2008
Marie Alda Gilles-Gonzalez; Gonzalo Gonzalez; Eduardo Henrique Silva Sousa; Jason R. Tuckerman
Heme-based sensors are a recently discovered functional class of heme proteins that serve to detect physiological fluctuations in oxygen (O(2)), carbon monoxide (CO), or nitric oxide (NO). Many of these modular sensors detect heme ligands by coupling a histidine-protein kinase to a heme-binding domain. They typically bind O2, CO, and NO but respond only to one of these ligands. Usually, they are active in the ferrous unliganded state but are switched off by saturation with O2. The heme-binding domains of these kinases are quite varied. They may feature a PAS fold, as in the Bradyrhizobium japonicum and Sinorhizobium melitoti FixL proteins, or a GAF fold, as in the Mycobacterium tuberculosis DevS and DosT proteins. Alternative folds, such as HNOB (also H-NOX), have also been noted for such signal-transducing kinases, although these classes are less well studied. Histidine-protein kinases function in partnership with cognate response-regulator substrate(s): usually transcription factors that they activate by phosphorylation. For example, FixL proteins specifically phosphorylate their FixJ partners, and DevS and DosT proteins phosphorylate DevR in response to hypoxia. We present methods for purifying these sensors and their protein substrates, verifying the quality of the preparations, determining the K(d) values for binding of ligand and preparing sensors of known saturation, and measuring the rates of turnover (k(cat)) of the protein substrate by sensors of known heme status.