Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo Leite Vieira Costa is active.

Publication


Featured researches published by Eduardo Leite Vieira Costa.


American Journal of Respiratory and Critical Care Medicine | 2013

Spontaneous Effort Causes Occult Pendelluft during Mechanical Ventilation

Takeshi Yoshida; Vinicius Torsani; Susimeire Gomes; Roberta R. De Santis; Marcelo A. Beraldo; Eduardo Leite Vieira Costa; Mauro R. Tucci; Walter A. Zin; Brian P. Kavanagh; Marcelo B. P. Amato

RATIONALE In normal lungs, local changes in pleural pressure (P(pl)) are generalized over the whole pleural surface. However, in a patient with injured lungs, we observed (using electrical impedance tomography) a pendelluft phenomenon (movement of air within the lung from nondependent to dependent regions without change in tidal volume) that was caused by spontaneous breathing during mechanical ventilation. OBJECTIVES To test the hypotheses that in injured lungs negative P(pl) generated by diaphragm contraction has localized effects (in dependent regions) that are not uniformly transmitted, and that such localized changes in P(pl) cause pendelluft. METHODS We used electrical impedance tomography and dynamic computed tomography (CT) to analyze regional inflation in anesthetized pigs with lung injury. Changes in local P(pl) were measured in nondependent versus dependent regions using intrabronchial balloon catheters. The airway pressure needed to achieve comparable dependent lung inflation during paralysis versus spontaneous breathing was estimated. MEASUREMENTS AND MAIN RESULTS In all animals, spontaneous breathing caused pendelluft during early inflation, which was associated with more negative local P(pl) in dependent regions versus nondependent regions (-13.0 ± 4.0 vs. -6.4 ± 3.8 cm H2O; P < 0.05). Dynamic CT confirmed pendelluft, which occurred despite limitation of tidal volume to less than 6 ml/kg. Comparable inflation of dependent lung during paralysis required almost threefold greater driving pressure (and tidal volume) versus spontaneous breathing (28.0 ± 0.5 vs. 10.3 ± 0.6 cm H2O, P < 0.01; 14.8 ± 4.6 vs. 5.8 ± 1.6 ml/kg, P < 0.05). CONCLUSIONS Spontaneous breathing effort during mechanical ventilation causes unsuspected overstretch of dependent lung during early inflation (associated with reciprocal deflation of nondependent lung). Even when not increasing tidal volume, strong spontaneous effort may potentially enhance lung damage.


Critical Care Medicine | 2008

Real-time detection of pneumothorax using electrical impedance tomography*

Eduardo Leite Vieira Costa; Caroline Nappi Chaves; Susimeire Gomes; Marcelo A. Beraldo; Márcia Souza Volpe; Mauro R. Tucci; Ivany A.L. Schettino; Stephan H. Bohm; Carlos Roberto Ribeiro de Carvalho; Harki Tanaka; Raul Gonzalez Lima; Marcelo B. P. Amato

Objectives:Pneumothorax is a frequent complication during mechanical ventilation. Electrical impedance tomography (EIT) is a noninvasive tool that allows real-time imaging of regional ventilation. The purpose of this study was to 1) identify characteristic changes in the EIT signals associated with pneumothoraces; 2) develop and fine-tune an algorithm for their automatic detection; and 3) prospectively evaluate this algorithm for its sensitivity and specificity in detecting pneumothoraces in real time. Design:Prospective controlled laboratory animal investigation. Setting:Experimental Pulmonology Laboratory of the University of São Paulo. Subjects:Thirty-nine anesthetized mechanically ventilated supine pigs (31.0 ± 3.2 kg, mean ± sd). Interventions:In a first group of 18 animals monitored by EIT, we either injected progressive amounts of air (from 20 to 500 mL) through chest tubes or applied large positive end-expiratory pressure (PEEP) increments to simulate extreme lung overdistension. This first data set was used to calibrate an EIT-based pneumothorax detection algorithm. Subsequently, we evaluated the real-time performance of the detection algorithm in 21 additional animals (with normal or preinjured lungs), submitted to multiple ventilatory interventions or traumatic punctures of the lung. Measurements and Main Results:Primary EIT relative images were acquired online (50 images/sec) and processed according to a few imaging-analysis routines running automatically and in parallel. Pneumothoraces as small as 20 mL could be detected with a sensitivity of 100% and specificity 95% and could be easily distinguished from parenchymal overdistension induced by PEEP or recruiting maneuvers. Their location was correctly identified in all cases, with a total delay of only three respiratory cycles. Conclusions:We created an EIT-based algorithm capable of detecting early signs of pneumothoraces in high-risk situations, which also identifies its location. It requires that the pneumothorax occurs or enlarges at least minimally during the monitoring period. Such detection was operator-free and in quasi real-time, opening opportunities for improving patient safety during mechanical ventilation.


The Lancet Respiratory Medicine | 2016

Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data.

Ary Serpa Neto; Sabrine N. T. Hemmes; Carmen Silvia Valente Barbas; Martin Beiderlinden; Ana Fernandez-Bustamante; Emmanuel Futier; Ognjen Gajic; Mohamed R. El-Tahan; Abdulmohsin A Al Ghamdi; Ersin Günay; Samir Jaber; Serdar Kokulu; Alf Kozian; Marc Licker; Wen Qian Lin; Andrew Maslow; Stavros G. Memtsoudis; Dinis Reis Miranda; Pierre Moine; Thomas Ng; Domenico Paparella; V. Marco Ranieri; Federica Scavonetto; Thomas F. Schilling; Gabriele Selmo; Paolo Severgnini; Juraj Sprung; Sugantha Sundar; Daniel Talmor; Tanja A. Treschan

BACKGROUND Protective mechanical ventilation strategies using low tidal volume or high levels of positive end-expiratory pressure (PEEP) improve outcomes for patients who have had surgery. The role of the driving pressure, which is the difference between the plateau pressure and the level of positive end-expiratory pressure is not known. We investigated the association of tidal volume, the level of PEEP, and driving pressure during intraoperative ventilation with the development of postoperative pulmonary complications. METHODS We did a meta-analysis of individual patient data from randomised controlled trials of protective ventilation during general anesthaesia for surgery published up to July 30, 2015. The main outcome was development of postoperative pulmonary complications (postoperative lung injury, pulmonary infection, or barotrauma). FINDINGS We included data from 17 randomised controlled trials, including 2250 patients. Multivariate analysis suggested that driving pressure was associated with the development of postoperative pulmonary complications (odds ratio [OR] for one unit increase of driving pressure 1·16, 95% CI 1·13-1·19; p<0·0001), whereas we detected no association for tidal volume (1·05, 0·98-1·13; p=0·179). PEEP did not have a large enough effect in univariate analysis to warrant inclusion in the multivariate analysis. In a mediator analysis, driving pressure was the only significant mediator of the effects of protective ventilation on development of pulmonary complications (p=0·027). In two studies that compared low with high PEEP during low tidal volume ventilation, an increase in the level of PEEP that resulted in an increase in driving pressure was associated with more postoperative pulmonary complications (OR 3·11, 95% CI 1·39-6·96; p=0·006). INTERPRETATION In patients having surgery, intraoperative high driving pressure and changes in the level of PEEP that result in an increase of driving pressure are associated with more postoperative pulmonary complications. However, a randomised controlled trial comparing ventilation based on driving pressure with usual care is needed to confirm these findings. FUNDING None.


Journal of Applied Physiology | 2012

Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse

João Batista Borges; Fernando Suarez-Sipmann; Stephan H. Bohm; Gerardo Tusman; Alexandre Melo; Enn Maripuu; Mattias Sandström; Marcelo Park; Eduardo Leite Vieira Costa; Göran Hedenstierna; Marcelo B. P. Amato

The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.


Current Opinion in Critical Care | 2013

The new definition for acute lung injury and acute respiratory distress syndrome: is there room for improvement?

Eduardo Leite Vieira Costa; Marcelo B. P. Amato

Purpose of reviewTo review the new (Berlin) definition of the acute respiratory distress syndrome (ARDS) and to propose potential improvements. Recent findingsThe Berlin definition resulted in the following modifications: a criterion of less than 7 days was used to define acute onset; the requirement of pulmonary artery wedge pressure was removed. Clinical judgment for characterizing hydrostatic pulmonary edema suffices, unless there is no apparent ARDS risk factor, in which case an objective evaluation is required; the category of acute lung injury was removed, and ARDS was divided into three categories of severity based on the P/F ratio – mild (from 201 to 300), moderate (from 101 to 200), and severe (⩽100 mmHg). A positive end-expiratory pressure value of at least 5 cm H2O became required for the diagnosis of ARDS. In this review, we propose that both the use of P/F ratio after some stabilization (first 24 h) and the use of compliance stratified at 0.4 ml/cm H2O/kg ideal body weight might improve the stratification of patients. SummaryThe Berlin definition brought improvement and simplification over the previous definitions. The use of data over the first 24 h to reclassify the severity of the disease and the use of compliance to stratify each oxygenation category might further improve the definition.


Anesthesiology | 2010

Mild endotoxemia during mechanical ventilation produces spatially heterogeneous pulmonary neutrophilic inflammation in sheep.

Eduardo Leite Vieira Costa; Guido Musch; Tilo Winkler; Tobias Schroeder; R. Scott Harris; Hazel A Jones; Jose G. Venegas; Marcos F. Vidal Melo

Background:There is limited information on the regional inflammatory effects of mechanical ventilation and endotoxemia on the production of acute lung injury. Measurement of 18F-fluorodeoxyglucose (18F-FDG) uptake with positron emission tomography allows for the regional, in vivo and noninvasive, assessment of neutrophilic inflammation. The authors tested whether mild endotoxemia combined with large tidal volume mechanical ventilation bounded by pressures within clinically acceptable limits could yield measurable and anatomically localized neutrophilic inflammation. Methods:Sheep were mechanically ventilated with plateau pressures = 30-32 cm H2O and positive end-expiratory pressure = 0 for 2 h. Six sheep received intravenous endotoxin (10 ng · kg−1 · min−1), whereas six did not (controls), in sequentially performed studies. The authors imaged with positron emission tomography the intrapulmonary kinetics of infused 13N-nitrogen and 18F-FDG to compute regional perfusion and 18F-FDG uptake. Transmission scans were used to assess aeration. Results:Mean gas fraction and perfusion distribution were similar between groups. In contrast, a significant increase in 18F-FDG uptake was observed in all lung regions of the endotoxin group. In this group, 18F-FDG uptake in the middle and dorsal regions was significantly larger than that in the ventral regions. Multivariate analysis showed that the 18F-FDG uptake was associated with regional aeration (P < 0.01) and perfusion (P < 0.01). Conclusions:Mild short-term endotoxemia in the presence of heterogeneous lung aeration and mechanical ventilation with pressures within clinically acceptable limits produces marked spatially heterogeneous increases in pulmonary neutrophilic inflammation. The dependence of inflammation on aeration and perfusion suggests a multifactorial basis for that finding. 18F-FDG uptake may be a sensitive marker of pulmonary neutrophilic inflammation in the studied conditions.


Critical Care Medicine | 2014

Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep*.

Tyler J. Wellman; Tilo Winkler; Eduardo Leite Vieira Costa; Guido Musch; R. Scott Harris; Hui Zheng; Jose G. Venegas; Marcos F. Vidal Melo

Objectives:Regional tidal lung strain may trigger local inflammation during mechanical ventilation, particularly when additional inflammatory stimuli are present. However, it is unclear whether inflammation develops proportionally to tidal strain or only above a threshold. We aimed to 1) assess the relationship between regional tidal strain and local inflammation in vivo during the early stages of lung injury in lungs with regional aeration heterogeneity comparable to that of humans and 2) determine how this strain-inflammation relationship is affected by endotoxemia. Design:Interventional animal study. Setting:Experimental laboratory and PET facility. Subjects:Eighteen 2- to 4-month-old sheep. Interventions:Three groups of sheep (n = 6) were mechanically ventilated to the same plateau pressure (30–32 cm H2O) with high-strain (VT = 18.2 ± 6.5 mL/kg, positive end-expiratory pressure = 0), high-strain plus IV lipopolysaccharide (VT = 18.4 ± 4.2 mL/kg, positive end-expiratory pressure = 0), or low-strain plus lipopolysaccharide (VT = 8.1 ± 0.2 mL/kg, positive end-expiratory pressure = 17 ± 3 cm H2O). At baseline, we acquired respiratory-gated PET scans of inhaled 13NN to measure tidal strain from end-expiratory and end-inspiratory images in six regions of interest. After 3 hours of mechanical ventilation, dynamic [18F]fluoro-2-deoxy-D-glucose scans were acquired to quantify metabolic activation, indicating local neutrophilic inflammation, in the same regions of interest. Measurements and Main Results:Baseline regional tidal strain had a significant effect on [18F]fluoro-2-deoxy-D-glucose net uptake rate Ki in high-strain lipopolysaccharide (p = 0.036) and on phosphorylation rate k3 in high-strain (p = 0.027) and high-strain lipopolysaccharide (p = 0.004). Lipopolysaccharide exposure increased the k3-tidal strain slope three-fold (p = 0.009), without significant lung edema. The low-strain lipopolysaccharide group showed lower baseline regional tidal strain (0.33 ± 0.17) than high-strain (1.21 ± 0.62; p < 0.001) or high-strain lipopolysaccharide (1.26 ± 0.44; p < 0.001) and lower k3 (p < 0.001) and Ki (p < 0.05) than high-strain lipopolysaccharide. Conclusions:Local inflammation develops proportionally to regional tidal strain during early lung injury. The regional inflammatory effect of strain is greatly amplified by IV lipopolysaccharide. Tidal strain enhances local [18F]fluoro-2-deoxy-D-glucose uptake primarily by increasing the rate of intracellular [18F]fluoro-2-deoxy-D-glucose phosphorylation.


Revista Brasileira De Terapia Intensiva | 2014

Recomendações brasileiras de ventilação mecânica 2013. Parte I

Carmen Silvia Valente Barbas; Alexandre Marini Ísola; Augusto Manoel de Carvalho Farias; Alexandre Biasi Cavalcanti; Ana Maria Casati Gama; Antônio Carlos Magalhães Duarte; Arthur Vianna; Ary Serpa Neto; Bruno de Arruda Bravim; Bruno do Valle Pinheiro; Bruno Franco Mazza; Carlos Roberto Ribeiro de Carvalho; Carlos Toufen Junior; Cid Marcos Nascimento David; Corine Taniguchi; Débora Dutra da Silveira Mazza; Desanka Dragosavac; Diogo Oliveira Toledo; Eduardo Leite Vieira Costa; Eliana Bernardete Caser; Eliezer Silva; Fábio Ferreira Amorim; Felipe Saddy; Filomena Regina Barbosa Gomes Galas; Gisele Sampaio Silva; Gustavo Faissol Janot de Matos; Joäo Claudio Emmerich; Jorge Luís dos Santos Valiatti; José Mario Meira Teles; Josue Almeida Victorino

Perspectives on invasive and noninvasive ventilatory support for critically ill patients are evolving, as much evidence indicates that ventilation may have positive effects on patient survival and the quality of the care provided in intensive care units in Brazil. For those reasons, the Brazilian Association of Intensive Care Medicine (Associacao de Medicina Intensiva Brasileira - AMIB) and the Brazilian Thoracic Society (Sociedade Brasileira de Pneumologia e Tisiologia - SBPT), represented by the Mechanical Ventilation Committee and the Commission of Intensive Therapy, respectively, decided to review the literature and draft recommendations for mechanical ventilation with the goal of creating a document for bedside guidance as to the best practices on mechanical ventilation available to their members. The document was based on the available evidence regarding 29 subtopics selected as the most relevant for the subject of interest. The project was developed in several stages, during which the selected topics were distributed among experts recommended by both societies with recent publications on the subject of interest and/or significant teaching and research activity in the field of mechanical ventilation in Brazil. The experts were divided into pairs that were charged with performing a thorough review of the international literature on each topic. All the experts met at the Forum on Mechanical Ventilation, which was held at the headquarters of AMIB in Sao Paulo on August 3 and 4, 2013, to collaboratively draft the final text corresponding to each sub-topic, which was presented to, appraised, discussed and approved in a plenary session that included all 58 participants and aimed to create the final document.


The Journal of Nuclear Medicine | 2010

Measurement of Regional Specific Lung Volume Change Using Respiratory-Gated PET of Inhaled 13N-Nitrogen

Tyler J. Wellman; Tilo Winkler; Eduardo Leite Vieira Costa; Guido Musch; R. Scott Harris; Jose G. Venegas; Marcos F. Vidal Melo

Regional specific lung volume change (sVol), defined as the regional tidal volume divided by the regional end-expiratory gas volume, is a key variable in lung mechanics and in the pathogenesis of ventilator-induced lung injury. Despite the usefulness of PET to study regional lung function, there is no established method to assess sVol with PET. We present a method to measure sVol from respiratory-gated PET images of inhaled 13N-nitrogen (13NN), validate the method against regional specific ventilation (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{s{\dot{V}}}\) \end{document}), and study the effect of region-of-interest (ROI) volume and orientation on the sVol–\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{s{\dot{V}}}\) \end{document} relationship. Methods: Four supine sheep were mechanically ventilated (tidal volume VT = 8 mL/kg, respiratory rate adjusted to normocapnia) at low (n = 2, positive end-expiratory pressure = 0) and high (n = 2, positive end-expiratory pressure adjusted to achieve a plateau pressure of 30 cm H2O) lung volumes. Respiratory-gated PET scans were obtained after inhaled 13NN equilibration both at baseline and after a period of mechanical ventilation. We calculated sVol from 13NN-derived regional fractional gas content at end-inspiration (FEI) and end-expiration (FEE) using the formula sVol = (FEI − FEE)/(FEE[1 − FEI]). \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{s{\dot{V}}}\) \end{document} was computed as the inverse of the subsequent 13NN washout curve time constant. ROIs were defined by dividing the lung field with equally spaced coronal, sagittal, and transverse planes, perpendicular to the ventrodorsal, laterolateral, and cephalocaudal axes, respectively. Results: sVol–\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(s\mathrm{{\dot{V}}}\) \end{document} linear regressions for ROIs based on the ventrodorsal axis yielded the highest R2 (range, 0.71–0.92 for mean ROI volumes from 7 to 162 mL), the cephalocaudal axis the next highest (R2 = 0.77–0.88 for mean ROI volumes from 38 to 162 mL), and the laterolateral axis the lowest (R2 = 0.65–0.83 for mean ROI volumes from 8 to 162 mL). ROIs based on the ventrodorsal axis yielded lower standard errors of estimates of sVol from \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{s{\dot{V}}}\) \end{document} than those based on the laterolateral axis or the cephalocaudal axis. Conclusion: sVol can be computed with PET using the proposed method and is highly correlated with \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{s{\dot{V}}}\) \end{document}. Errors in sVol are smaller for larger ROIs and for orientations based on the ventrodorsal axis.


Critical Care Medicine | 2014

Early inflammation mainly affects normally and poorly aerated lung in experimental ventilator-induced lung injury*.

João Batista Borges; Eduardo Leite Vieira Costa; Fernando Suarez-Sipmann; Charles Widström; Anders Larsson; Marcelo B. P. Amato; Göran Hedenstierna

Objective:The common denominator in most forms of ventilator-induced lung injury is an intense inflammatory response mediated by neutrophils. PET with [18F]fluoro-2-deoxy-D-glucose can be used to image cellular metabolism, which, during lung inflammatory processes, mainly reflects neutrophil activity, allowing the study of regional lung inflammation in vivo. The aim of this study was to assess the location and magnitude of lung inflammation using PET imaging of [18F]fluoro-2-deoxy-D-glucose in a porcine experimental model of early acute respiratory distress syndrome. Design:Prospective laboratory investigation. Setting:A university animal research laboratory. Subjects:Seven piglets submitted to experimental ventilator-induced lung injury and five healthy controls. Interventions:Lung injury was induced by lung lavages and 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressure and high inspiratory pressures. All animals were subsequently studied with dynamic PET imaging of [18F]fluoro-2-deoxy-D-glucose. CT scans were acquired at end expiration and end inspiration. Measurements and Main Results:[18F]fluoro-2-deoxy-D-glucose uptake rate was computed for the whole lung, four isogravitational regions, and regions grouping voxels with similar density. Global and intermediate gravitational zones [18F]fluoro-2-deoxy-D-glucose uptakes were higher in ventilator-induced lung injury piglets compared with controls animals. Uptake of normally and poorly aerated regions was also higher in ventilator-induced lung injury piglets compared with control piglets, whereas regions suffering tidal recruitment or tidal hyperinflation had [18F]fluoro-2-deoxy-D-glucose uptakes similar to controls. Conclusions:The present findings suggest that normally and poorly aerated regions—corresponding to intermediate gravitational zones—are the primary targets of the inflammatory process accompanying early experimental ventilator-induced lung injury. This may be attributed to the small volume of the aerated lung, which receives most of ventilation.

Collaboration


Dive into the Eduardo Leite Vieira Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro R. Tucci

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Marcelo Park

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge