Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo M. Kawakami is active.

Publication


Featured researches published by Eduardo M. Kawakami.


Physiologia Plantarum | 2009

Heat stress‐induced limitations to reproductive success in Gossypium hirsutum

John L. Snider; Derrick M. Oosterhuis; Briggs W. Skulman; Eduardo M. Kawakami

Using in vitro systems, numerous authors have cited the sensitivity of pollen tube growth to high temperature as a major cause of low yields for crops with valuable reproductive structures. We investigated the hypothesis that in vivo fertilization efficiency would be negatively affected by heat stress-induced changes in energy reserves and calcium-mediated oxidative status in the pistil. Gossypium hirsutum plants exposed to optimal (30/20 degrees C) or high day temperature (38/20 degrees C) conditions during flowering were analyzed for fertilization efficiency via UV microscopic observation of pollen tube-containing ovules and for soluble carbohydrates, adenosine triphosphate (ATP), calcium, antioxidant enzyme activity and NADPH oxidase (NOX; EC 1.6.3.1) activity in the pistil. Leaf measurements included gas exchange, chlorophyll content, quantum efficiency and ATP content of the subtending leaf on the day of anthesis. In the pistil fertilization efficiency, soluble carbohydrates, ATP content and NOX activity declined significantly, whereas water soluble calcium and glutathione reductase (EC 1.8.1.7) activity increased, and superoxide dismutase (EC 1.15.1.1) activity remained unchanged. In leaves, heat stress decreased photosynthesis, quantum efficiency and chlorophyll content, but increased stomatal conductance. We conclude that decreased source leaf activity either inhibits pollen development, tube growth through the style or guidance to the ovules as a result of an insufficient energy supply to the developing pistil. We further conclude that a calcium-augmented antioxidant response in heat-stressed pistils interferes with enzymatic superoxide production needed for normal pollen tube growth and fertilization of the ovule.


Physiologia Plantarum | 2010

Genotypic differences in thermotolerance are dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum.

John L. Snider; Derrick M. Oosterhuis; Eduardo M. Kawakami

Numerous studies have illustrated the need for antioxidant enzymes in acquired photosynthetic thermotolerance, but information on their possible role in promoting innate thermotolerance is lacking. We investigated the hypothesis that genotypic differences in source leaf photosynthetic thermostability would be dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. To test this hypothesis, thermosensitive (cv. ST4554) and reportedly thermotolerant (cv. VH260) G. hirsutum plants were exposed to control (30/20 degrees C) or high-day temperature (38/20 degrees C) conditions during flowering and source leaf gas exchange, chlorophyll content and maximum photochemical efficiency (F(v)/F(m)) were measured for each treatment. The relationship between source leaf thermostability and prestress antioxidant capacity was quantified by monitoring the actual quantum yield response of photosystem II (PSII) (Phi(PSII)) to a range of temperatures for both cultivars grown under the control temperature regime and measuring antioxidant enzyme activity for those same leaves. VH260 was more thermotolerant than ST4554 as evidenced by photosynthesis and F(v)/F(m) being significantly lower under high temperature for ST4554 but not VH260. Under identical growth conditions, VH260 had significantly higher optimal and threshold temperatures for Phi(PSII) and glutathione reductase (GR; EC 1.8.1.7) activity than ST4554, and innate threshold temperature was dependent upon endogenous GR and superoxide dismutase (SOD; EC 1.15.1.1) activity. We conclude that maintaining a sufficient antioxidant enzyme pool prior to heat stress is an innate mechanism for coping with rapid leaf temperature increases that commonly occur under field conditions.


Journal of Plant Physiology | 2011

High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils

John L. Snider; Derrick M. Oosterhuis; Dimitra A. Loka; Eduardo M. Kawakami

It has recently been reported that high temperature slows in vivo pollen tube growth rates in Gossypium hirsutum pistils under field conditions. Although numerous physical and biochemical pollen-pistil interactions are necessary for in vivo pollen tube growth to occur, studies investigating the influence of heat-induced changes in pistil biochemistry on in vivo pollen tube growth rates are lacking. We hypothesized that high temperature would alter diurnal pistil biochemistry and that pollen tube growth rates would be dependent upon the soluble carbohydrate content of the pistil during pollen tube growth. G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures but at the same developmental stage. Diurnal pistil measurements included carbohydrate balance, glutathione reductase (GR; EC 1.8.1.7), soluble protein, superoxide dismutase (SOD; EC 1.15.1.1), NADPH oxidase (NOX; EC 1.6.3.1), adenosine triphosphate (ATP), and water-soluble calcium. Soluble carbohydrate levels in cotton pistils were as much as 67.5% lower under high temperature conditions (34.6 °C maximum air temperature; August 4, 2009) than under cooler conditions (29.9 °C maximum air temperature; August 14, 2009). Regression analysis revealed that pollen tube growth rates were highly correlated with the soluble carbohydrate content of the pistil during pollen tube growth (r² = 0.932). Higher ambient temperature conditions on August 4 increased GR activity in the pistil only during periods not associated with in vivo pollen tube growth; pistil protein content declined earlier in the day under high temperatures; SOD and NOX were unaffected by either sample date or time of day; pistil ATP and water soluble calcium were unaffected by the warmer temperatures. We conclude that moderate heat stress significantly alters diurnal carbohydrate balance in the pistil and suggest that pollen tube growth rate through the style may be limited by soluble carbohydrate supply in the pistil.


Advances in Agronomy | 2014

The Physiology of Potassium in Crop Production

Derrick M. Oosterhuis; Dimitra A. Loka; Eduardo M. Kawakami; William T. Pettigrew

Abstract Potassium (K) plays a major role in the basic functions of plant growth and development. In addition, K is also involved in numerous physiological functions related to plant health and tolerance to biotic and abiotic stress. However, deficiencies occur widely resulting in poor growth, lost yield, and reduced fiber quality. This review describes the physiological functions of K and the role in stress relief and also provides some agronomic aspects of K requirements, diagnosis of soil and plant potassium status, and amelioration. The physiological processes described include enzymes and organic compound synthesis regulation, water relations and stomates, photosynthesis, transport, cell signaling, and plant response to drought stress, cold stress, salt stress, as well as biotic stresses.


Journal of Plant Physiology | 2011

Diurnal pollen tube growth rate is slowed by high temperature in field-grown Gossypium hirsutum pistils

John L. Snider; Derrick M. Oosterhuis; Eduardo M. Kawakami

For Gossypium hirsutum pollination, germination, and pollen tube growth must occur in a highly concerted fashion on the day of flowering for fertilization to occur. Because reproductive success could be influenced by the photosynthetic activity of major source leaves, we hypothesized that increased temperatures under field conditions would limit fertilization by inhibiting diurnal pollen tube growth through the style and decreasing subtending leaf photosynthesis. To address this hypothesis, G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures while at the same developmental stage (node 8 above the cotyledons). Collection and measurement were conducted at 06:00, 09:00, 12:00, 15:00, and 18:00h on August 4 (34.6°C maximum air temperature) and 14, 2009 (29.9°C maximum air temperature). Microclimate measurements included photosynthetically active radiation, relative humidity, and air temperature. Pistil measurements included pistil surface temperature, pollen germination, pollen tube growth through the style, fertilization efficiency, fertilized ovule number, and total number of ovules per ovary. Subtending leaf measurements included leaf temperature, photosynthesis, and stomatal conductance. Under high temperatures the first measurable pollen tube growth through the style was observed earlier in the day (12:00h) than under cooler conditions (15:00h). Also, high temperature resulted in slower pollen tube growth through the style (2.05mmh(-1)) relative to cooler conditions (3.35mmh(-1)), but there were no differences in fertilization efficiency, number of fertilized ovules, or ovule number. There was no effect of sampling date on diurnal photosynthetic patterns, where the maximum photosynthetic rate was observed at 12:00h on both dates. It is concluded that, of the measured physiological and reproductive processes, pollen tube growth rate showed the greatest sensitivity to high temperature under field conditions.


Journal of Plant Nutrition | 2013

INFLUENCE OF HIGH TEMPERATURE AND UREA FERTILIZATION WITH N-(N-BUTYL) THIOPHOSPHORIC TRIAMIDE AND DICYANDIAMINDE ON COTTON GROWTH AND PHYSIOLOGY

Eduardo M. Kawakami; Derrick M. Oosterhuis; John L. Snider

The objective of this growth chamber study was to evaluate the effect of adding N-(n-butyl) thiophosphoric triamide (NBPT) and dicyandiaminde (DCD) to urea fertilizer, on the physiology and growth of cotton (Gossypiumhirsutum L.) under normal and high temperatures. Treatments consisted of two day temperature regimes, 30°C and 38°C, and five nitrogen fertilization applications: unfertilized control, 125 kg ha−1 of urea, 93 kg ha−1 of urea, 93 kg ha−1 urea + NBPT, and 93 kg ha−1 urea + NBPT + DCD. The addition of NBPT to urea fertilizer had positive effects on leaf chlorophyll, leaf area, dry matter, nitrogen (N) uptake, and N use efficiency. The absence of a significant interaction effect indicated that N fertilization was not influenced by temperature. Deficiency of N significantly decreased leaf chlorophyll, increased glutathione reductase, decreased protein and increased leaf nitrate reductase. Physiological changes under high temperature included increased plant N uptake, glutamine synthetase, leaf chlorophyll, protein content, plant height and leaf area were due to high N uptake and utilization.


Journal of Plant Growth Regulation | 2010

Physiological Effects of 1-Methylcyclopropene on Well-Watered and Water-Stressed Cotton Plants

Eduardo M. Kawakami; Derrick M. Oosterhuis; John L. Snider


European Journal of Agronomy | 2012

Physiological and yield responses of field-grown cotton to application of urea with the urease inhibitor NBPT and the nitrification inhibitor DCD

Eduardo M. Kawakami; Derrick M. Oosterhuis; John L. Snider; Morteza Mozaffari


Journal of Agronomy and Crop Science | 2011

Mechanisms of Reproductive Thermotolerance in Gossypium hirsutum: The Effect of Genotype and Exogenous Calcium Application

John L. Snider; Derrick M. Oosterhuis; Eduardo M. Kawakami


Journal of Agronomy and Crop Science | 2013

Nitrogen Assimilation and Growth of Cotton Seedlings under NaCl Salinity and in Response to Urea Application with NBPT and DCD

Eduardo M. Kawakami; Derrick M. Oosterhuis; John L. Snider

Collaboration


Dive into the Eduardo M. Kawakami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William T. Pettigrew

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge