Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John L. Snider is active.

Publication


Featured researches published by John L. Snider.


Journal of Plant Physiology | 2014

Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis

Daryl R. Chastain; John L. Snider; Guy D. Collins; Calvin D. Perry; Jared Whitaker; Seth A. Byrd

Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from -0.31 to -0.95MPa, and ΨMD ranged from -1.02 to -2.67MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.


Journal of Plant Physiology | 2013

Field-acclimated Gossypium hirsutum cultivars exhibit genotypic and seasonal differences in photosystem II thermostability.

John L. Snider; Derrick M. Oosterhuis; Guy D. Collins; Cristiane Pilon; Toby R. FitzSimons

Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD=-3.1MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5°C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20-30 days Tmax≥35°C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r(2) from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars.


Journal of Plant Physiology | 2016

Leaf ontogeny strongly influences photosynthetic tolerance to drought and high temperature in Gossypium hirsutum

Daryl R. Chastain; John L. Snider; John S. Choinski; Guy D. Collins; Calvin D. Perry; Jared Whitaker; Timothy L. Grey; Ronald B. Sorensen; Marc W. van Iersel; Seth A. Byrd; Wesley M. Porter

Temperature and drought are major abiotic limitations to crop productivity worldwide. While abiotic stress physiology research has focused primarily on fully expanded leaves, no studies have investigated photosynthetic tolerance to concurrent drought and high temperature during leaf ontogeny. To address this, Gossypium hirsutum plants were exposed to five irrigation treatments, and two different leaf stages were sampled on three dates during an abnormally dry summer. Early in the growing season, ontogenic PSII heat tolerance differences were observed. Photosystem II was more thermotolerant in young leaves than mature leaves. Later in the growing season, no decline in young leaf net photosynthesis (PN) was observed as leaf temperature increased from 31 to 37°C, as average midday leaf water potential (ΨMD) declined from -1.25 to -2.03MPa. In contrast, mature leaf PN declined 66% under the same conditions. Stomatal conductance (gs) accounted for 84-98% of variability in leaf temperature, and gs was strongly associated with ΨMD in mature leaves but not in young leaves. We conclude that young leaves are more photosynthetically tolerant to heat and drought than mature leaves. Elucidating the mechanisms causing these ontogenic differences will likely help mitigate the negative impacts of abiotic stress in the future.


Plant Science | 2017

Combined elevated temperature and soil waterlogging stresses inhibit cell elongation by altering osmolyte composition of the developing cotton (Gossypium hirsutum L.) fiber

Yinglong Chen; Haimiao Wang; Wei Hu; Shanshan Wang; Youhua Wang; John L. Snider; Zhiguo Zhou

Soil waterlogging events and high temperature conditions occur frequently in the Yangtze River Valley, yet the effects of these co-occurring stresses on fiber elongation have received little attention. In the current study, the combined effect of elevated temperature (ET) and soil waterlogging (SW) more negatively affected final fiber length (reduced by 5.4%-11.3%) than either stress alone by altering the composition of osmotically active solutes (sucrose, malate, and K+), where SW had the most pronounced effect. High temperature accelerated early fiber development, but limited the duration of elongation, thereby limiting final fiber length. Treatment of ET alone altered fiber sucrose content mainly through decreased source strength and the expression of the sucrose transporter gene GhSUT-1, making sucrose availability the primary determinant of final fiber length under ET. Waterlogging stress alone decreased source strength, down-regulated GhSUT-1 expression and enhanced SuSy catalytic activity for sucrose reduction. Waterlogging treatment alone also limited fiber malate production by down-regulating GhPEPC-1 & -2. However, combined elevated temperature and waterlogging limited primary cell wall synthesis by affecting GhCESAs genes and showed a negative impact on all three major osmotic solutes through the regulation of GhSUT-1, GhPEPC-1 & -2 and GhKT-1 expression and altered SuSy activity, which functioned together to produce a shorter fiber length.


Journal of Plant Physiology | 2015

Predawn respiration rates during flowering are highly predictive of yield response in Gossypium hirsutum when yield variability is water-induced

John L. Snider; Daryl R. Chastain; Calvin D. Meeks; Guy D. Collins; Ronald B. Sorensen; Seth A. Byrd; Calvin D. Perry

Respiratory carbon evolution by leaves under abiotic stress is implicated as a major limitation to crop productivity; however, respiration rates of fully expanded leaves are positively associated with plant growth rates. Given the substantial sensitivity of plant growth to drought, it was hypothesized that predawn respiration rates (RPD) would be (1) more sensitive to drought than photosynthetic processes and (2) highly predictive of water-induced yield variability in Gossypium hirsutum. Two studies (at Tifton and Camilla Georgia) addressed these hypotheses. At Tifton, drought was imposed beginning at the onset of flowering (first flower) and continuing for three weeks (peak bloom) followed by a recovery period, and predawn water potential (ΨPD), RPD, net photosynthesis (AN) and maximum quantum yield of photosystem II (Fv/Fm) were measured throughout the study period. At Camilla, plants were exposed to five different irrigation regimes throughout the growing season, and average ΨPD and RPD were determined between first flower and peak bloom for all treatments. For both sites, fiber yield was assessed at crop maturity. The relationships between ΨPD, RPD and yield were assessed via non-linear regression. It was concluded for field-grown G. hirsutum that (1) RPD is exceptionally sensitive to progressive drought (more so than AN or Fv/Fm) and (2) average RPD from first flower to peak bloom is highly predictive of water-induced yield variability.


Physiologia Plantarum | 2017

Carbohydrate metabolism in the subtending leaf cross-acclimates to waterlogging and elevated temperature stress and influences boll biomass in cotton (Gossypium hirsutum)

Haimiao Wang; Yinglong Chen; Wei Hu; Shanshan Wang; John L. Snider; Zhiguo Zhou

Short-term waterlogging and chronic elevated temperature occur concomitantly in the cotton (Gossypium hirsutum) growing season. While previous research about co-occurring waterlogging and elevated temperature has focused primarily on cotton fiber, no studies have investigated carbohydrate metabolism of the subtending leaf (a major source leaf for boll development) cross-acclimation to aforementioned stressors. To address this, plants were exposed to ambient (31.6/26.5°C) and elevated (34.1/29.0°C) temperatures during the whole flowering and boll formation stage, and waterlogging (0, 3, 6 days) beginning on the day of anthesis. Both waterlogging and high temperature limited boll biomass (reduced by 1.19-32.14%), but effects of different durations of waterlogging coupled with elevated temperature on carbohydrate metabolism in the subtending leaf were quite different. The 6-day waterlogging combined with elevated temperature had the most negative impact on net photosynthetic rate (Pn) and carbohydrate metabolism of any treatment, leading to upregulated GhSusA and GhSusC expression and enhanced sucrose synthase (SuSy, EC 2.4.1.13) activity for sucrose degradation. A prior exposure to waterlogging for 3 days improved subtending leaf performance under elevated temperature. Pn, sucrose concentrations, Rubisco (EC 4.1.1.39) activity, and cytosolic fructose-1,6-bisphosphatase (cy-FBPase, EC 3.1.3.11) activity in the subtending leaf significantly increased, while SuSy activity decreased under 3 days waterlogging and elevated temperature combined relative to elevated temperature alone. Thus, we concluded that previous exposure to a brief (3 days) waterlogging stress improved sucrose composition and accumulation cross-acclimation to high temperature later in development not only by promoting leaf photosynthesis but also inhibiting sucrose degradation.


Weed Technology | 2016

Cotton Stage of Growth Determines Sensitivity to 2,4-D

Seth A. Byrd; Guy D. Collins; A. Stanley Culpepper; Darrin M. Dodds; Keith L. Edmisten; David L. Wright; Gaylon D. Morgan; Paul A. Baumann; Peter A. Dotray; Misha R. Manuchehri; Andrea Jones; Timothy L. Grey; Theodore M. Webster; Jerry W. Davis; Jared Whitaker; Phillip M. Roberts; John L. Snider; Wesley M. Porter

The anticipated release of EnlistTM cotton, corn, and soybean cultivars likely will increase the use of 2,4-D, raising concerns over potential injury to susceptible cotton. An experiment was conducted at 12 locations over 2013 and 2014 to determine the impact of 2,4-D at rates simulating drift (2 g ae ha−1) and tank contamination (40 g ae ha−1) on cotton during six different growth stages. Growth stages at application included four leaf (4-lf), nine leaf (9-lf), first bloom (FB), FB + 2 wk, FB + 4 wk, and FB + 6 wk. Locations were grouped according to percent yield loss compared to the nontreated check (NTC), with group I having the least yield loss and group III having the most. Epinasty from 2,4-D was more pronounced with applications during vegetative growth stages. Importantly, yield loss did not correlate with visual symptomology, but more closely followed effects on boll number. The contamination rate at 9-lf, FB, or FB + 2 wk had the greatest effect across locations, reducing the number of bolls per plant when compared to the NTC, with no effect when applied at FB + 4 wk or later. A reduction of boll number was not detectable with the drift rate except in group III when applied at the FB stage. Yield was influenced by 2,4-D rate and stage of cotton growth. Over all locations, loss in yield of greater than 20% occurred at 5 of 12 locations when the drift rate was applied between 4-lf and FB + 2 wk (highest impact at FB). For the contamination rate, yield loss was observed at all 12 locations; averaged over these locations yield loss ranged from 7 to 66% across all growth stages. Results suggest the greatest yield impact from 2,4-D occurs between 9-lf and FB + 2 wk, and the level of impact is influenced by 2,4-D rate, crop growth stage, and environmental conditions. Nomenclature: 2,4-D; cotton, Gossypium hirsutum L. La anticipada liberación de cultivares Enlist™ de algodón, maíz, y soja probablemente incrementará el uso de 2,4-D, aumentando así la preocupación del daño potencial en algodón susceptible. Se realizó un experimento en 12 localidades durante 2013 y 2014 para determinar el impacto de 2,4-D a dosis de deriva simulada (2 g ae ha−1) y de contaminación en tanque (40 g ae ha−1) sobre algodón durante seis estadios de crecimiento diferente. Los estadios de crecimiento al momento de aplicación incluyeron cuatro hojas (4-lf), nueve hojas (9-lf), primer brote florar (FB), FB + 2 semanas (wk), FB + 4 wk, y FB + 6 wk. Las localidades fueron agrupadas según el porcentaje de pérdida de rendimiento al compararse con el testigo sin tratamiento (NTC), teniendo el grupo I la menor pérdida de rendimiento y el grupo III la mayor. La epinastia producto de 2,4-D fue más pronunciada con aplicaciones durante los estadios de crecimiento vegetativo. Importantemente, la pérdida en el rendimiento no correlacionó con la sintomatología visual, pero siguió de cerca los efectos en el número de frutos. La dosis de contaminación a 9-lf, FB, o FB + 2 wk tuvo el mayor efecto en todas las localidades, reduciendo el número de frutos por planta cuando se comparó con el NTC, pero sin tener efecto cuando se aplicó en FB + 4 wk o después. La reducción en el número de frutos no fue detectable con la dosis de deriva excepto en el grupo III cuando se aplicó en el estadio FB. El rendimiento fue influenciado por la dosis de 2,4-D y el estadio de crecimiento del algodón. Considerando todas las localidades, las pérdidas de rendimiento mayor a 20% ocurrieron en 5 de 12 localidades cuando se aplicó la dosis de deriva entre 4-lf y FB + 2 wk (mayor impacto a FB). Para la dosis de contaminación, la pérdida en rendimiento fue observada en todas las 12 localidades. Al promediar todas las localidades, la pérdida de rendimiento varió entre 7 y 66% entre todos los estadios de crecimiento. Los resultados sugieren que el mayor impacto en el rendimiento causado por 2,4-D ocurre entre 9-lf y FB + 2 wk, y el nivel de impacto es influenciado por la dosis de 2,4-D, el estadio de crecimiento, y las condiciones ambientales.


Scientific Reports | 2018

Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat ( Triticum aestivum L.)

Muhammad Abid; Shafaqat Ali; Lei Kang Qi; Rizwan Zahoor; Zhongwei Tian; Dong Jiang; John L. Snider; Tingbo Dai

Defining the metabolic strategies used by wheat to tolerate and recover from drought events will be important for ensuring yield stability in the future, but studies addressing this critical research topic are limited. To this end, the current study quantified the physiological, biochemical, and agronomic responses of a drought tolerant and drought sensitive cultivar to periods of water deficit and recovery. Drought stress caused a reversible decline in leaf water relations, membrane stability, and photosynthetic activity, leading to increased reactive oxygen species (ROS) generation, lipid peroxidation and membrane injury. Plants exhibited osmotic adjustment through the accumulation of soluble sugars, proline, and free amino acids and increased enzymatic and non-enzymatic antioxidant activities. After re-watering, leaf water potential, membrane stability, photosynthetic processes, ROS generation, anti-oxidative activities, lipid peroxidation, and osmotic potential completely recovered for moderately stressed plants and did not fully recover in severely stressed plants. Higher photosynthetic rates during drought and rapid recovery after re-watering produced less-pronounced yield declines in the tolerant cultivar than the sensitive cultivar. These results suggested that the plant’s ability to maintain functions during drought and to rapidly recover after re-watering during vegetative periods are important for determining final productivity in wheat.


Plant Physiology and Biochemistry | 2017

Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.)

Rizwan Zahoor; Wenqing Zhao; Haoran Dong; John L. Snider; Muhammad Abid; Babar Iqbal; Zhiguo Zhou

To investigate whether potassium (K) application enhances the potential of cotton (Gossypium hirsutum L.) plants to maintain physiological functions during drought and recovery, low K-sensitive (Siza 3) and -tolerant (Simian 3) cotton cultivars were exposed to three K rates (0, 150, and 300 K2O kg ha-1) and either well-watered conditions or severe drought stress followed by a recovery period. Under drought stress, cotton plants showed a substantial decline in leaf water potential, stomatal conductance, photosynthetic rate, and the maximum and actual quantum yield of PSII, resulting in greater non-photochemical quenching and lipid peroxidation as compared to well-watered plants. However, plants under K application not only showed less of a decline in these traits but also displayed greater potential to recover after rewatering as compared to the plants without K application. Plants receiving K application showed lower lipid peroxidation, higher antioxidant enzyme activities, and increased proline accumulation as compared to plants without K application. Significant relationships between rates of photosynthetic recovery and K application were observed. The cultivar Siza 3 exhibited a more positive response to K application than Simian 3. The results suggest that K application enhances the cotton plants potential to maintain functionality under drought and facilitates recovery after rewatering.


Plant Physiology and Biochemistry | 2018

OJIP-fluorescence parameters as rapid indicators of cotton (Gossypium hirsutum L.) seedling vigor under contrasting growth temperature regimes

John L. Snider; Nuengsap Thangthong; Cristiane Pilon; Gurpreet Virk

Vigorous seedling growth in cotton is desirable because it minimizes the negative impact of multiple early season stresses, and seedling vigor can be impacted by early season growth temperature or cultivar. OJIP fluorescence provides rapid information on a broad range of photosynthetic component processes and may be a useful surrogate for seeding vigor, but this possibility has not been evaluated previously in cotton. To this end, a controlled environment study was conducted with six cultivars selected based on seed characteristics that are widely indicative of vigor and under two growth temperature regimes (sub-optimal = 20/15 °C day/night temperature; optimal = 30/20 °C) for the first two weeks after seed germination. Thereafter multiple whole-plant vigor assessments were conducted along with extensive OJIP-fluorescence characterization in cotyledons. Growth temperature was the primary factor influencing multiple plant responses. Specifically, all whole-plant indicators of seedling vigor were negatively impacted by sub-optimal temperature as were all photosynthetic performance indices and quantum efficiencies. By comparison, most photosynthetic structural indicators or reaction center-specific fluxes were either unaffected or positively impacted by low growth temperature, largely because PSII antenna size increased. The performance index, PIABS, and the quantum efficiency, φEo, were the most sensitive to low growth temperature and exhibited the strongest relationships with whole-plant seedling vigor. Thus, OJIP parameters incorporating intersystem electron transport beyond PSII but not additional downstream processes may represent the most useful surrogates for whole-plant seedling vigor in cotton.

Collaboration


Dive into the John L. Snider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiguo Zhou

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shanshan Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Binglin Chen

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Hu

University of Georgia

View shared research outputs
Researchain Logo
Decentralizing Knowledge