Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo N. Taboada is active.

Publication


Featured researches published by Eduardo N. Taboada.


BMC Bioinformatics | 2010

Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions

Chad R. Laing; Cody J. Buchanan; Eduardo N. Taboada; Yongxiang Zhang; Andrew M. Kropinski; Andre Villegas; James E. Thomas; Victor P. J. Gannon

BackgroundThe pan-genome of a bacterial species consists of a core and an accessory gene pool. The accessory genome is thought to be an important source of genetic variability in bacterial populations and is gained through lateral gene transfer, allowing subpopulations of bacteria to better adapt to specific niches. Low-cost and high-throughput sequencing platforms have created an exponential increase in genome sequence data and an opportunity to study the pan-genomes of many bacterial species. In this study, we describe a new online pan-genome sequence analysis program, Panseq.ResultsPanseq was used to identify Escherichia coli O157:H7 and E. coli K-12 genomic islands. Within a population of 60 E. coli O157:H7 strains, the existence of 65 accessory genomic regions identified by Panseq analysis was confirmed by PCR. The accessory genome and binary presence/absence data, and core genome and single nucleotide polymorphisms (SNPs) of six L. monocytogenes strains were extracted with Panseq and hierarchically clustered and visualized. The nucleotide core and binary accessory data were also used to construct maximum parsimony (MP) trees, which were compared to the MP tree generated by multi-locus sequence typing (MLST). The topology of the accessory and core trees was identical but differed from the tree produced using seven MLST loci. The Loci Selector module found the most variable and discriminatory combinations of four loci within a 100 loci set among 10 strains in 1 s, compared to the 449 s required to exhaustively search for all possible combinations; it also found the most discriminatory 20 loci from a 96 loci E. coli O157:H7 SNP dataset.ConclusionPanseq determines the core and accessory regions among a collection of genomic sequences based on user-defined parameters. It readily extracts regions unique to a genome or group of genomes, identifies SNPs within shared core genomic regions, constructs files for use in phylogeny programs based on both the presence/absence of accessory regions and SNPs within core regions and produces a graphical overview of the output. Panseq also includes a loci selector that calculates the most variable and discriminatory loci among sets of accessory loci or core gene SNPs.AvailabilityPanseq is freely available online at http://76.70.11.198/panseq. Panseq is written in Perl.


BMC Genomics | 2007

Genome evolution in major Escherichia coli O157:H7 lineages

Yongxiang Zhang; Chad R. Laing; Marina Steele; Kim Ziebell; Roger P. Johnson; Andrew K. Benson; Eduardo N. Taboada; Victor P. J. Gannon

BackgroundGenetic analysis of Escherichia coli O157:H7 strains has shown divergence into two distinct lineages, lineages I and II, that appear to have distinct ecological characteristics, with lineage I strains more commonly associated with human disease. In this study, microarray-based comparative genomic hybridization (CGH) was used to identify genomic differences among 31 E. coli O157:H7 strains that belong to various phage types (PTs) and different lineage-specific polymorphism assay (LSPA) types.ResultsA total of 4,084 out of 6,057 ORFs were detected in all E. coli O157:H7 strains and 1,751 were variably present or absent. Based on this data, E. coli O157:H7 strains were divided into three distinct clusters, which consisted of 15 lineage I (LSPA type 111111), four lineage I/II (designated in this study) (LSPA type 211111) and 12 lineage II strains (LSPA 222222, 222211, 222212, and 222221), respectively. Eleven different genomic regions that were dominant in lineage I strains (present in ≥80% of lineage I and absent from ≥ 92% of lineage II strains) spanned segments containing as few as two and up to 25 ORFs each. These regions were identified within E. coli Sakai S-loops # 14, 16, 69, 72, 78, 83, 85, 153 and 286, Sakai phage 10 (S-loops # 91, 92 and 93) and a genomic backbone region. All four lineage I/II strains were of PT 2 and possessed eight of these 11 lineage I-dominant loci. Several differences in virulence-associated loci were noted between lineage I and lineage II strains, including divergence within S-loop 69, which encodes Shiga toxin 2, and absence of the non-LEE encoded effector genes nleF and nleH1-2 and the perC homologue gene pchD in lineage II strains.ConclusionCGH data suggest the existence of two dominant lineages as well as LSPA type and PT-related subgroups within E. coli O157:H7. The genomic composition of these subgroups supports the phylogeny that has been inferred from other methods and further suggests that genomic divergence from an ancestral form and lateral gene transfer have contributed to their evolution. The genomic features identified in this study may contribute to apparent differences in the epidemiology and ecology of strains of different E. coli O157:H7 lineages.


Journal of Clinical Microbiology | 2004

Large-Scale Comparative Genomics Meta-Analysis of Campylobacter jejuni Isolates Reveals Low Level of Genome Plasticity

Eduardo N. Taboada; Rey R Acedillo; Catherine D. Carrillo; Wendy A Findlay; Diane T. Medeiros; Oksana Mykytczuk; Michael J. Roberts; C. Alexander Valencia; Jeffrey M. Farber; John H. E. Nash

ABSTRACT We have used comparative genomic hybridization (CGH) on a full-genome Campylobacter jejuni microarray to examine genome-wide gene conservation patterns among 51 strains isolated from food and clinical sources. These data have been integrated with data from three previous C. jejuni CGH studies to perform a meta-analysis that included 97 strains from the four separate data sets. Although many genes were found to be divergent across multiple strains (n = 350), many genes (n = 249) were uniquely variable in single strains. Thus, the strains in each data set comprise strains with a unique genetic diversity not found in the strains in the other data sets. Despite the large increase in the collective number of variable C. jejuni genes (n = 599) found in the meta-analysis data set, nearly half of these (n = 276) mapped to previously defined variable loci, and it therefore appears that large regions of the C. jejuni genome are genetically stable. A detailed analysis of the microarray data revealed that divergent genes could be differentiated on the basis of the amplitudes of their differential microarray signals. Of 599 variable genes, 122 could be classified as highly divergent on the basis of CGH data. Nearly all highly divergent genes (117 of 122) had divergent neighbors and showed high levels of intraspecies variability. The approach outlined here has enabled us to distinguish global trends of gene conservation in C. jejuni and has enabled us to define this group of genes as a robust set of variable markers that can become the cornerstone of a new generation of genotyping methods that use genome-wide C. jejuni gene variability data.


Water Research | 2011

Molecular subtypes of Campylobacter spp., Salmonella enterica, and Escherichia coli O157:H7 isolated from faecal and surface water samples in the Oldman River watershed, Alberta, Canada

Cassandra C. Jokinen; Thomas A. Edge; S. Ho; Wendell Koning; Chad R. Laing; W. Mauro; Diane Medeiros; Jim J. Miller; William Robertson; Eduardo N. Taboada; James E. Thomas; E. Topp; Kim Ziebell; Victor P. J. Gannon

Campylobacter spp., Salmonella enterica, and Escherichia coli O157:H7 isolated from 898 faecal, 43 sewage, and 342 surface water samples from the Oldman River were characterized using bacterial subtyping methods in order to investigate potential sources of contamination of the watershed. Among these pathogens, Campylobacter spp. were the most frequently isolated from faecal, sewage, and surface water samples (266/895, 11/43, and 91/342, respectively), followed by Salmonella (67/898, 8/43, and 29/342, respectively), and E. coli O157:H7 (16/898, 2/43, and 8/342, respectively). Salmonella Rubislaw was the most common serovar isolated from water. This serovar was also isolated from two wild bird species. Most other serovars isolated from water were either not isolated from animals or were isolated from multiple species. E. coli O157:H7 was predominantly isolated from cattle. The most common phage-types of this pathogen from cattle were also the most common among water isolates, and there were exact pulsed field gel electrophoresis and comparative genomic fingerprint matches between cattle, sewage, and water isolates. Campylobacters were commonly isolated from surface waters and faeces from most animal species. Restriction fragment length polymorphism of the Campylobacter flaA gene identified several location and host species-specific (cattle, goose, pig) fingerprints. Molecular subtyping of these bacterial pathogens shows considerable promise as a tool for determining the sources of faecal pollution of water.


Applied and Environmental Microbiology | 2008

Genotypic Characterization and Prevalence of Virulence Factors among Canadian Escherichia coli O157:H7 Strains

Kim Ziebell; Marina Steele; Yongxiang Zhang; Andrew K. Benson; Eduardo N. Taboada; Chad R. Laing; Scott A. McEwen; Bruce Ciebin; Roger P. Johnson; Victor P. J. Gannon

ABSTRACT In this study, the association between genotypic and selected phenotypic characteristics was examined in a collection of Canadian Escherichia coli O157:H7 strains isolated from humans and cattle in the provinces of Alberta, Ontario, Saskatchewan, and Quebec. In a subset of 69 strains selected on the basis of specific phage types (PTs), a strong correlation between the lineage-specific polymorphism assay (LSPA6) genotype and PT was observed with all strains of PTs 4, 14, 21, 31, 33, and 87 belonging to the LSPA6 lineage I (LSPA6-LI) genotype, while those of PTs 23, 45, 67, and 74 belonged to LSPA6 lineage II (LSPA6-LII) genotypes. This correlation was maintained when additional strains of each PT were tested. E. coli O157:H7 strains with the LSPA6-LI genotype were much more common in the collection than were the LSPA6-LII or lineage I/II (LSPA6-LI/II)-related genotypes (82.6, 11.2, and 5.8%, respectively). Of the strains tested, proportionately more LSPA6-LI than LSPA6-LII genotype strains were isolated from humans (52.7% versus 19.7%) than from cattle (47.8% versus 80.2%). In addition, 96.7% of the LSPA6-LII strains carried the stx2c variant gene, while only 50.0% of LSPA6-LI/II and 2.7% of LSPA6-LI strains carried this gene. LSPA6-LII strains were also significantly more likely to possess the colicin D gene, cda (50.8% versus 23.2%), and have combined resistance to streptomycin, sulfisoxazole, and tetracycline (72.1% versus 0.9%) than were LSPA6-LI strains. The LSPA6 genotype- and PT-related characteristics identified may be important markers of specific ecotypes of E. coli O157:H7 that have unique epidemiological and virulence characteristics.


Journal of Clinical Microbiology | 2012

Development and validation of a comparative genomic fingerprinting method for high-resolution genotyping of Campylobacter jejuni.

Eduardo N. Taboada; Susan L. Ross; Steven K. Mutschall; Joanne MacKinnon; Michael J. Roberts; Cody J. Buchanan; Peter Kruczkiewicz; Cassandra C. Jokinen; James E. Thomas; John H. E. Nash; Victor P. J. Gannon; Barbara Marshall; Frank Pollari; Clifford G. Clark

ABSTRACT Campylobacter spp. are a leading cause of bacterial gastroenteritis worldwide. The need for molecular subtyping methods with enhanced discrimination in the context of surveillance- and outbreak-based epidemiologic investigations of Campylobacter spp. is critical to our understanding of sources and routes of transmission and the development of mitigation strategies to reduce the incidence of campylobacteriosis. We describe the development and validation of a rapid and high-resolution comparative genomic fingerprinting (CGF) method for C. jejuni. A total of 412 isolates from agricultural, environmental, retail, and human clinical sources obtained from the Canadian national integrated enteric pathogen surveillance program (C-EnterNet) were analyzed using a 40-gene assay (CGF40) and multilocus sequence typing (MLST). The significantly higher Simpsons index of diversity (ID) obtained with CGF40 (ID = 0.994) suggests that it has a higher discriminatory power than MLST at both the level of clonal complex (ID = 0.873) and sequence type (ID = 0.935). High Wallace coefficients obtained when CGF40 was used as the primary typing method suggest that CGF and MLST are highly concordant, and we show that isolates with identical MLST profiles are comprised of isolates with distinct but highly similar CGF profiles. The high concordance with MLST coupled with the ability to discriminate between closely related isolates suggests that CFG40 is useful in differentiating highly prevalent sequence types, such as ST21 and ST45. CGF40 is a high-resolution comparative genomics-based method for C. jejuni subtyping with high discriminatory power that is also rapid, low cost, and easily deployable for routine epidemiologic surveillance and outbreak investigations.


Journal of Water and Health | 2010

The occurrence and sources of Campylobacter spp., Salmonella enterica and Escherichia coli O157:H7 in the Salmon River, British Columbia, Canada

Cassandra C. Jokinen; Hans Schreier; William Mauro; Eduardo N. Taboada; Judith L. Isaac-Renton; Edward Topp; Thomas A. Edge; James E. Thomas; Victor P. J. Gannon

In this study, we wished to assess the prevalence and determine the sources of three zoonotic bacterial pathogens (Salmonella, Campylobacter, and Escherichia coli O157:H7) in the Salmon River watershed in southwestern British Columbia. Surface water, sewage, and animal faecal samples were collected from the watershed. Selective bacterial culture and PCR techniques were used to isolate these three pathogens and indicator bacteria from these samples and characterize them. Campylobacter was the most prevalent pathogen in all samples, followed by Salmonella, and E. coli O157:H7. E. coli O157:H7 and Salmonella isolation rates from water, as well as faecal coliform densities correlated positively with precipitation, while Campylobacter isolation rates correlated negatively with precipitation. Analysis of DNA extracted from water samples for the presence of Bacteroides host-species markers, and comparisons of C. jejuni flaA-RFLP types and Salmonella serovars from faecal and water samples provided evidence that human sewage and specific domestic and wild animal species were sources of these pathogens; however, in most cases the source could not be determined or more than one source was possible. The frequent isolation of these zoonotic pathogens in the Salmon River highlights the risks to human health associated with intentional and unintentional consumption of untreated surface waters.


Journal of Microbiological Methods | 2013

Evaluation of MALDI-TOF mass spectroscopy methods for determination of Escherichia coli pathotypes

Clifford G. Clark; Peter Kruczkiewicz; Cai Guan; Stuart McCorrister; Patrick Chong; John L. Wylie; Paul Van Caeseele; Helen Tabor; Phillip Snarr; Matthew W. Gilmour; Eduardo N. Taboada; Garrett Westmacott

It is rapidly becoming apparent that many E. coli pathotypes cause a considerable burden of human disease. Surveillance of these organisms is difficult because there are few or no simple, rapid methods for detecting and differentiating the different pathotypes. MALDI-TOF mass spectroscopy has recently been rapidly and enthusiastically adopted by many clinical laboratories as a diagnostic method because of its high throughput, relatively low cost, and adaptability to the laboratory workflow. To determine whether the method could be adapted for E. coli pathotype differentiation the Bruker Biotyper methodology and a second methodology adapted from the scientific literature were tested on isolates representing eight distinct pathotypes and two other groups of E. coli. A total of 136 isolates was used for this study. Results confirmed that the Bruker Biotyper methodology that included extraction of proteins from bacterial cells was capable of identifying E. coli isolates from all pathotypes to the species level and, furthermore, that the Bruker extraction and MALDI-TOF MS with the evaluation criteria developed in this work was effective for differentiating most pathotypes.


PLOS ONE | 2016

The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies

Catherine Yoshida; Peter Kruczkiewicz; Chad R. Laing; Erika J. Lingohr; Victor P. J. Gannon; John H. E. Nash; Eduardo N. Taboada

For nearly 100 years serotyping has been the gold standard for the identification of Salmonella serovars. Despite the increasing adoption of DNA-based subtyping approaches, serotype information remains a cornerstone in food safety and public health activities aimed at reducing the burden of salmonellosis. At the same time, recent advances in whole-genome sequencing (WGS) promise to revolutionize our ability to perform advanced pathogen characterization in support of improved source attribution and outbreak analysis. We present the Salmonella In Silico Typing Resource (SISTR), a bioinformatics platform for rapidly performing simultaneous in silico analyses for several leading subtyping methods on draft Salmonella genome assemblies. In addition to performing serovar prediction by genoserotyping, this resource integrates sequence-based typing analyses for: Multi-Locus Sequence Typing (MLST), ribosomal MLST (rMLST), and core genome MLST (cgMLST). We show how phylogenetic context from cgMLST analysis can supplement the genoserotyping analysis and increase the accuracy of in silico serovar prediction to over 94.6% on a dataset comprised of 4,188 finished genomes and WGS draft assemblies. In addition to allowing analysis of user-uploaded whole-genome assemblies, the SISTR platform incorporates a database comprising over 4,000 publicly available genomes, allowing users to place their isolates in a broader phylogenetic and epidemiological context. The resource incorporates several metadata driven visualizations to examine the phylogenetic, geospatial and temporal distribution of genome-sequenced isolates. As sequencing of Salmonella isolates at public health laboratories around the world becomes increasingly common, rapid in silico analysis of minimally processed draft genome assemblies provides a powerful approach for molecular epidemiology in support of public health investigations. Moreover, this type of integrated analysis using multiple sequence-based methods of sub-typing allows for continuity with historical serotyping data as we transition towards the increasing adoption of genomic analyses in epidemiology. The SISTR platform is freely available on the web at https://lfz.corefacility.ca/sistr-app/.


PLOS ONE | 2014

A Systematic Review Characterizing On-Farm Sources of Campylobacter spp. for Broiler Chickens

Agnes Agunos; Lisa Waddell; David Léger; Eduardo N. Taboada

Campylobacter and antimicrobial-resistant Campylobacter are frequently isolated from broiler chickens worldwide. In Canada, campylobacteriosis is the third leading cause of enteric disease and the regional emergence of ciprofloxacin-resistant Campylobacter in broiler chickens has raised a public health concern. This study aimed to identify, critically appraise, and synthesize literature on sources of Campylobacter in broilers at the farm level using systematic review methodology. Literature searches were conducted in January 2012 and included electronic searches in four bibliographic databases. Relevant studies in French or English (n = 95) conducted worldwide in any year and all study designs were included. Risk of Bias and GRADE criteria endorsed by the Cochrane collaboration was used to assess the internal validity of the study and overall confidence in the meta-analysis. The categories for on-farm sources were: broiler breeders/vertical transfer (number of studies = 32), animals (n = 57), humans (n = 26), environment (n = 54), and water (n = 63). Only three studies examined the antimicrobial resistance profiles of Campylobacter from these on-farm sources. Subgroups of data by source and outcome were analyzed using random effect meta-analysis. The highest risk for contaminating a new flock appears to be a contaminated barn environment due to insufficient cleaning and disinfection, insufficient downtime, and the presence of an adjacent broiler flock. Effective biosecurity enhancements from physical barriers to restricting human movement on the farm are recommended for consideration to enhance local on-farm food safety programs. Improved sampling procedures and standardized laboratory testing are needed for comparability across studies. Knowledge gaps that should be addressed include farm-level drug use and antimicrobial resistance information, further evaluation of the potential for vertical transfer, and improved genotyping methods to strengthen our understanding of Campylobacter epidemiology in broilers at the farm-level. This systematic review emphasizes the importance of improved industry-level and on-farm risk management strategies to reduce pre-harvest Campylobacter in broilers.

Collaboration


Dive into the Eduardo N. Taboada's collaboration.

Top Co-Authors

Avatar

Victor P. J. Gannon

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Steven K. Mutschall

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

John H. E. Nash

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Peter Kruczkiewicz

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Chad R. Laing

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine D. Carrillo

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

G. Douglas Inglis

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Clifford G. Clark

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Dillon O. R. Barker

Public Health Agency of Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge