Steven K. Mutschall
Public Health Agency of Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven K. Mutschall.
Journal of Clinical Microbiology | 2012
Eduardo N. Taboada; Susan L. Ross; Steven K. Mutschall; Joanne MacKinnon; Michael J. Roberts; Cody J. Buchanan; Peter Kruczkiewicz; Cassandra C. Jokinen; James E. Thomas; John H. E. Nash; Victor P. J. Gannon; Barbara Marshall; Frank Pollari; Clifford G. Clark
ABSTRACT Campylobacter spp. are a leading cause of bacterial gastroenteritis worldwide. The need for molecular subtyping methods with enhanced discrimination in the context of surveillance- and outbreak-based epidemiologic investigations of Campylobacter spp. is critical to our understanding of sources and routes of transmission and the development of mitigation strategies to reduce the incidence of campylobacteriosis. We describe the development and validation of a rapid and high-resolution comparative genomic fingerprinting (CGF) method for C. jejuni. A total of 412 isolates from agricultural, environmental, retail, and human clinical sources obtained from the Canadian national integrated enteric pathogen surveillance program (C-EnterNet) were analyzed using a 40-gene assay (CGF40) and multilocus sequence typing (MLST). The significantly higher Simpsons index of diversity (ID) obtained with CGF40 (ID = 0.994) suggests that it has a higher discriminatory power than MLST at both the level of clonal complex (ID = 0.873) and sequence type (ID = 0.935). High Wallace coefficients obtained when CGF40 was used as the primary typing method suggest that CGF and MLST are highly concordant, and we show that isolates with identical MLST profiles are comprised of isolates with distinct but highly similar CGF profiles. The high concordance with MLST coupled with the ability to discriminate between closely related isolates suggests that CFG40 is useful in differentiating highly prevalent sequence types, such as ST21 and ST45. CGF40 is a high-resolution comparative genomics-based method for C. jejuni subtyping with high discriminatory power that is also rapid, low cost, and easily deployable for routine epidemiologic surveillance and outbreak investigations.
Journal of Environmental Quality | 2012
Cassandra C. Jokinen; Thomas A. Edge; Wendell Koning; Chad R. Laing; David R. Lapen; Jim J. Miller; Steven K. Mutschall; Andrew Scott; Eduardo N. Taboada; James E. Thomas; Edward Topp; Graham Wilkes; Victor P. J. Gannon
In regions where animal agriculture is prominent, such as southern Alberta, higher rates of gastrointestinal illness have been reported when compared with nonagricultural regions. This difference in the rate of illness is thought to be a result of increased zoonotic pathogen exposure through environmental sources such as water. In this study, temporal and spatial factors associated with bacterial pathogen contamination of the Oldman River, which transverses this region, were analyzed using classification and regression tree analysis. Significantly higher levels of fecal indicators; more frequent isolations of Campylobacter spp., Escherichia coli O157:H7, and Salmonella enterica spp.; and higher rates of detection of pig-specific Bacteroides markers occurred at downstream sites than at upstream sites, suggesting additive stream inputs. Fecal indicator densities were also significantly higher when any one of these three bacterial pathogens was present and where there were higher total animal manure units; however, occasionally pathogens were present when fecal indicator levels were low or undetectable. Overall, Salmonella spp., Campylobacter spp., and E. coli O157:H7 presence was associated with season, animal manure units, and total rainfall on the day of sampling and 3 d in advance of sampling. Several of the environmental variables analyzed in this study appear to influence pathogen prevalence and therefore may be useful in predicting water quality and safety and in the improvement of watershed management practices in this and other agricultural regions.
Frontiers in Cellular and Infection Microbiology | 2012
Catherine D. Carrillo; Peter Kruczkiewicz; Steven K. Mutschall; Andrei Tudor; Clifford G. Clark; Eduardo N. Taboada
Tracking of sources of sporadic cases of campylobacteriosis remains challenging, as commonly used molecular typing methods have limited ability to unambiguously link genetically related strains. Genomics has become increasingly prominent in the public health response to enteric pathogens as methods enable characterization of pathogens at an unprecedented level of resolution. However, the cost of sequencing and expertise required for bioinformatic analyses remains prohibitive, and these comprehensive analyses are limited to a few priority strains. Although several molecular typing methods are currently widely used for epidemiological analysis of campylobacters, it is not clear how accurately these methods reflect true strain relationships. To address this, we have developed a framework and associated computational tools to rapidly analyze draft genome sequence data for the assessment of molecular typing methods against a “gold standard” based on the phylogenetic analysis of highly conserved core (HCC) genes with high sequence quality. We analyzed 104 publicly available whole genome sequences (WGS) of C. jejuni and C. coli. In addition to in silico determination of multi-locus sequence typing (MLST), flaA, and porA type, as well as comparative genomic fingerprinting (CGF) type, we inferred a “reference” phylogeny based on 389 HCC genes. Molecular typing data were compared to the reference phylogeny for concordance using the adjusted Wallace coefficient (AWC) with confidence intervals. Although MLST targets the sequence variability in core genes and CGF targets insertions/deletions of accessory genes, both methods are based on multi-locus analysis and provided better estimates of true phylogeny than methods based on single loci (porA, flaA). A more comprehensive WGS dataset including additional genetically related strains, both epidemiologically linked and unlinked, will be necessary to more comprehensively assess the performance of subtyping methods for outbreak investigations and surveillance activities. Analyses of the strengths and weaknesses of widely used typing methodologies in inferring true strain relationships will provide guidance in the interpretation of this data for epidemiological purposes.
Journal of Microbiological Methods | 2012
Cassandra C. Jokinen; Jacqueline M. Koot; Catherine D. Carrillo; Victor P. J. Gannon; Claire M. Jardine; Steven K. Mutschall; Edward Topp; Eduardo N. Taboada
Improved isolation techniques from environmental water and animal samples are vital to understanding Campylobacter epidemiology. In this study, the efficiency of selective enrichment in Bolton Broth (BB) followed by plating on charcoal cefoperazone deoxycholate agar (CCDA) (conventional method) was compared with an approach combining BB enrichment and passive filtration (membrane method) adapted from a method previously developed for testing of broiler meat, in the isolation of thermophilic campylobacters from surface water and animal fecal samples. The conventional method led to recoveries of Campylobacter from 36.7% of the water samples and 78.0% of the fecal samples and similar numbers, 38.3% and 76.0%, respectively, were obtained with the membrane method. To investigate the genetic diversity of Campylobacter jejuni and Campylobacter coli obtained by these two methods, isolates were analyzed using Comparative Genomic Fingerprinting, a high-resolution subtyping technique. The conventional and membrane methods yielded similar numbers of Campylobacter subtypes from water (25 and 28, respectively) and fecal (15 and 17, respectively) samples. Although there was no significant difference in recovery rates between the conventional and membrane methods, a significant improvement in isolation efficiency was obtained by using the membrane method, with a false-positive rate of 1.6% compared with 30.7% obtained using the conventional method. In conclusion, although the two methods are comparable in sensitivity, the membrane method had higher specificity, making it a cost-effective procedure for the enhanced isolation of C. jejuni and C. coli from water and animal fecal samples.
PLOS ONE | 2017
André Ravel; Matt Hurst; Nicoleta Petrica; Julie David; Steven K. Mutschall; Katarina Pintar; Eduardo N. Taboada; Frank Pollari
Human campylobacteriosis is a common zoonosis with a significant burden in many countries. Its prevention is difficult because humans can be exposed to Campylobacter through various exposures: foodborne, waterborne or by contact with animals. This study aimed at attributing campylobacteriosis to sources at the point of exposure. It combined comparative exposure assessment and microbial subtype comparison with subtypes defined by comparative genomic fingerprinting (CGF). It used isolates from clinical cases and from eight potential exposure sources (chicken, cattle and pig manure, retail chicken, beef, pork and turkey meat, and surface water) collected within a single sentinel site of an integrated surveillance system for enteric pathogens in Canada. Overall, 1518 non-human isolates and 250 isolates from domestically-acquired human cases were subtyped and their subtype profiles analyzed for source attribution using two attribution models modified to include exposure. Exposure values were obtained from a concurrent comparative exposure assessment study undertaken in the same area. Based on CGF profiles, attribution was possible for 198 (79%) human cases. Both models provide comparable figures: chicken meat was the most important source (65–69% of attributable cases) whereas exposure to cattle (manure) ranked second (14–19% of attributable cases), the other sources being minor (including beef meat). In comparison with other attributions conducted at the point of production, the study highlights the fact that Campylobacter transmission from cattle to humans is rarely meat borne, calling for a closer look at local transmission from cattle to prevent campylobacteriosis, in addition to increasing safety along the chicken supply chain.
Frontiers in Microbiology | 2017
Cody J. Buchanan; Andrew L. Webb; Steven K. Mutschall; Peter Kruczkiewicz; Dillon O. R. Barker; Benjamin M. Hetman; Victor P. J. Gannon; D. Wade Abbott; James E. Thomas; G. Douglas Inglis; Eduardo N. Taboada
Campylobacter jejuni is a leading human enteric pathogen worldwide and despite an improved understanding of its biology, ecology, and epidemiology, limited tools exist for identifying strains that are likely to cause disease. In the current study, we used subtyping data in a database representing over 24,000 isolates collected through various surveillance projects in Canada to identify 166 representative genomes from prevalent C. jejuni subtypes for whole genome sequencing. The sequence data was used in a genome-wide association study (GWAS) aimed at identifying accessory gene markers associated with clinically related C. jejuni subtypes. Prospective markers (n = 28) were then validated against a large number (n = 3,902) of clinically associated and non-clinically associated genomes from a variety of sources. A total of 25 genes, including six sets of genetically linked genes, were identified as robust putative diagnostic markers for clinically related C. jejuni subtypes. Although some of the genes identified in this study have been previously shown to play a role in important processes such as iron acquisition and vitamin B5 biosynthesis, others have unknown function or are unique to the current study and warrant further investigation. As few as four of these markers could be used in combination to detect up to 90% of clinically associated isolates in the validation dataset, and such markers could form the basis for a screening assay to rapidly identify strains that pose an increased risk to public health. The results of the current study are consistent with the notion that specific groups of C. jejuni strains of interest are defined by the presence of specific accessory genes.
International Journal of Food Microbiology | 2017
Claudia Narvaez-Bravo; Eduardo N. Taboada; Steven K. Mutschall; Mueen Aslam
Campylobacter is an important zoonotic pathogen found in livestock and can cause illness in humans following consumption of raw and undercooked meat products. The objectives of this study were to determine the prevalence of Campylobacter spp. in retail meat (poultry, turkey, pork and beef) purchased in Alberta, Canada and to assess antimicrobial resistance and genetic relatedness of recovered Campylobacter strains with previously isolated strains from clinical and environmental sources. A Comparative Genomic Fingerprinting (CGF) method was used for assessing genetic relatedness of isolates. A total of 606 samples comprising 204, 110, 145 and 147 samples of retail chicken, turkey, ground beef and pork, respectively, were obtained. Campylobacter was isolated from 23.5% (48/204) of chicken samples and 14.2% (8/110) of turkey samples. Pork and beef samples were negative for Campylobacter. Campylobacter jejuni was the most common (94.6%) spp. found followed by C. coli (5.4%). Resistance to tetracycline was found in 48.1% of isolates, followed by resistance to ciprofloxacin (5.5%), nalidixic acid (5.5%), azithromycin (1.78%), and erythromycin (1.78%). All isolates were susceptible to clindamycin, florfenicol, gentamicin and telithromycin. Tetracycline resistance was attributable to the presence of the tetO gene. CGF analysis showed that Campylobacter isolated from poultry meat in this study were genetically related to clinical isolates recovered from human infections and to those isolated from animals and the environment.
Epidemiology and Infection | 2017
E. Schleihauf; Steven K. Mutschall; B. Billard; Eduardo N. Taboada; D. Haldane
A subtyping methodology for Campylobacter, Comparative Genomic Fingerprinting (CGF40), has been described recently. The objective of this study was to assess the utility of CGF40 as a tool to enhance routine public health surveillance of campylobacteriosis. Isolates of Campylobacter from across the province were requested and sent for CGF40 subtyping. Epidemiological data from cases reported to public health officials in Nova Scotia, Canada, from January 2012 to March 2015 were linked with blinded CGF40 subtyping results. CGF40 was epidemiologically valid; subtyping discerned known epidemiologically related isolates and augmented case-finding. Predominant sources and locations of subtype detection from the national reference database showed some study subtypes were rare and even novel to the database, while others were more commonly identified over multiple years and with exposures locally and internationally. A case-case study design was applied to examine risk factors for the most common CGF40 subtypes detected. Differences in the epidemiology of different CGF40 subtypes were observed. Statistically significant associations were noted for specific subtypes with rural residence, local exposure, contact with a pet dog or cat, contact with chickens, and drinking unpasteurized milk. With prospective use, CGF40 could potentially identify unrecognized outbreaks and contribute to epidemiological investigations of case clusters.
Zoonoses and Public Health | 2017
M. Viswanathan; David L. Pearl; Eduardo N. Taboada; E. J. Parmley; Steven K. Mutschall; Claire M. Jardine
Using data collected from a cross‐sectional study of 25 farms (eight beef, eight swine and nine dairy) in 2010, we assessed clustering of molecular subtypes of C. jejuni based on a Campylobacter‐specific 40 gene comparative genomic fingerprinting assay (CGF40) subtypes, using unweighted pair‐group method with arithmetic mean (UPGMA) analysis, and multiple correspondence analysis. Exact logistic regression was used to determine which genes differentiate wildlife and livestock subtypes in our study population. A total of 33 bovine livestock (17 beef and 16 dairy), 26 wildlife (20 raccoon (Procyon lotor), five skunk (Mephitis mephitis) and one mouse (Peromyscus spp.) C. jejuni isolates were subtyped using CGF40. Dendrogram analysis, based on UPGMA, showed distinct branches separating bovine livestock and mammalian wildlife isolates. Furthermore, two‐dimensional multiple correspondence analysis was highly concordant with dendrogram analysis showing clear differentiation between livestock and wildlife CGF40 subtypes. Based on multilevel logistic regression models with a random intercept for farm of origin, we found that isolates in general, and raccoons more specifically, were significantly more likely to be part of the wildlife branch. Exact logistic regression conducted gene by gene revealed 15 genes that were predictive of whether an isolate was of wildlife or bovine livestock isolate origin. Both multiple correspondence analysis and exact logistic regression revealed that in most cases, the presence of a particular gene (13 of 15) was associated with an isolate being of livestock rather than wildlife origin. In conclusion, the evidence gained from dendrogram analysis, multiple correspondence analysis and exact logistic regression indicates that mammalian wildlife carry CGF40 subtypes of C. jejuni distinct from those carried by bovine livestock. Future studies focused on source attribution of C. jejuni in human infections will help determine whether wildlife transmit Campylobacter jejuni directly to humans.
Zoonoses and Public Health | 2018
Nadine A. Vogt; David L. Pearl; Eduardo N. Taboada; Richard Reid-Smith; Michael R. Mulvey; Nicol Janecko; Steven K. Mutschall; Claire M. Jardine
From May through October 2016, we conducted a repeated cross‐sectional study examining the effects of temporal, spatial, flock and demographic factors (i.e. juvenile vs. adult) on the prevalence of Campylobacter and antimicrobial resistant Enterobacteriaceae among 344 fresh faecal samples collected from Canada geese (Branta canadensis) from four locations where birds nested in Guelph, Ontario, Canada. The overall prevalence of Campylobacter among all fresh faecal samples was 9.3% and was greatest in the fall when these birds became more mobile following the nesting season. Based on 40 gene comparative genomic fingerprinting (CGF40), the increase in prevalence noted in the fall was matched by an increase in the number of unique CGF40 subtypes identified. Resistance to colistin was detected most commonly, in 6% of Escherichia coli isolates, and was highest in the late summer months. All colistin‐resistant isolates were negative for the mcr‐1 to mcr‐5 genes; a chromosomal resistance mechanism (PmrB) was identified in all of these isolates. The prevalence of samples with E. coli exhibiting multi‐class resistance or extended spectrum beta‐lactamase was low (i.e. <2% of samples). The intra‐class correlation coefficients, estimated from the variance components of multilevel logistic regression models, indicated that the shedding of Campylobacter and antimicrobial resistant E. coli among geese within a flock (i.e. birds collected from the same site on the same day) was moderately correlated. Spatial, temporal, and spatiotemporal clusters identified using the spatial scan statistic, largely supported the findings from our multi‐level models. Salmonella was not isolated from any of the fresh faecal samples collected suggesting that its prevalence in this population of birds was very low.