Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo P. Melo is active.

Publication


Featured researches published by Eduardo P. Melo.


Biotechnology annual review | 2001

Reverse micelles and protein biotechnology.

Eduardo P. Melo; M.R. Aires-Barros; J. M. S. Cabral

Reverse micelles are nanometer-sized (1-10 nm) water droplets dispersed in organic media obtained by the action of surfactants. Surfactant molecules organize with the polar part to the inner side able to solubilize water and the apolar part in contact with the organic solvent. Proteins can be solubilized in the water pool of reverse micelles. Studies on the structure-function relationships of proteins in reverse micelles are very important since the microenvironment in which the protein is solubilized has physico-chemical properties distinct from a bulk aqueous solution. Some of the unique characteristics of reverse micelles make them very useful for biotechnological applications. Charge and hydrophilic/hydrophobic characteristics of the protein and the selection of surfactant can be used to achieve selective solubilization of proteins. This has been used to extend the classical liquid-liquid extraction with solvents to protein bioseparation. For biocatalysis the presence of a bulk organic solvent allow synthetic reactions to be performed via the control of water content and the solubilization of hydrophobic substrates. This is accomplished with a higher interfacial area (about 100 m2/mL) than the conventional biphasic systems, minimizing mass transfer problems.


Applied Biochemistry and Biotechnology | 1995

Triglyceride hydrolysis and stability of a recombinant cutinase fromFusarium solani in AOT-iso-octane reversed micelles

Eduardo P. Melo; M.R. Aires-Barros; J. M. S. Cabral

A recombinant cutinase fromFusarium solani was encapsulated in AOT reversed micelles. Physicochemical parameters of the system were optimized relative to triolein hydrolysis. Kinetic studies of triglyceride hydrolysis showed a decrease in specificity with increase of the acyl chain length. Stability of cutinase in the system under study is lower than in aqueous solution and decreases with increase in the water content in the system (W0 = [H2O]/[AOT]). The products of triolein hydrolysis had little effect on the cutinase stability. Although glycerol did not alter the stability, oleic acid decreases the enzyme stability. The increase in log P of solvent (fromiso-octane ton-dodecane) decreased the stability. Deactivation profiles were fitted with the Henley and Sadana model (1).


Archives of Biochemistry and Biophysics | 2003

Heme and pH-Dependent Stability of an Anionic Horseradish Peroxidase

Ana Carvalho; Eduardo P. Melo; Bruno Ferreira; Maria Teresa Neves-Petersen; Steffen B. Petersen; M.R. Aires-Barros

Horseradish peroxidase A1 thermal stability was studied by steady-state fluorescence, circular dichroism and differential scanning calorimetry at pH values of 4, 7 and 10. Changes in the intrinsic protein probes, tryptophan fluorescence, secondary structure, and heme group environment are not coincident. The T(m) values measured from the visible CD data are higher than those measured from Trp fluorescence and far-UV CD data at all pH values showing that the heme cavity is the last structural region to suffer significant conformational changes during thermal denaturation. However ejection of the heme group leads to an irreversible unfolding behavior at pH 4, while at pH 7 and 10 refolding is still observed. This is putatively correlated with the titration state of the heme pocket. Thermal transitions of HRPA1 showed scan rate dependence at the three pH values, showing that the denaturation process was kinetically controlled. The denaturation process was interpreted in terms of the classic scheme, N<-->U-->D and fitted to far-UV CD ellipticity. A good agreement was obtained between the experimental and theoretical T(m) values and percentages of irreversibility. However the equilibrium between N and U is probably more complex than just a two-state process as revealed by the multiple T(m) values.


Proteins | 2001

Cutinase unfolding and stabilization by trehalose and mannosylglycerate.

Eduardo P. Melo; T.Q. Faria; Lígia O. Martins; Ana Goncalves; J. M. S. Cabral

The unfolding of cutinase at pH 4.5 was induced by increasing the temperature and guanidine hydrochloride concentration in the presence of potassium chloride, trehalose, and mannosylglycerate potassium salt. Protein thermal unfolding approached a two‐state process, since the unfolding transitions were coincident within experimental error when assessed by near‐ultraviolet (UV) difference, tryptophyl, and 8‐anilino‐1‐naphthalene sulfonic acid (ANS) fluorescence spectroscopy. Trehalose at 0.5 M increased the temperature at which 50% of cutinase is unfolded by 3°C. Unfolding induced by guanidine hydrochloride is clearly a non‐two‐state process. The presence of a stable intermediate was detected because unfolding assessed by near‐UV difference spectroscopy occurs earlier than unfolding assessed by tryptophyl fluorescence. The intermediate is molten globule in character: the ANS fluorescence is higher than in the presence of the folded or unfolded state, showing native‐like secondary structure and losing many tertiary interactions of the folded state, i.e., those surrounding the tyrosyl microenvironment. The stabilization effect of trehalose and mannosylglycerate was quantified by fitting the unfolding transitions to a model proposed by Staniforth et al. ( Biochemistry 1993;32:3842–3851 ). This model takes into consideration the increase in solvation energies of the amino acid side‐chains as the denaturant concentration was increased and the fraction of amino acid side‐chains that become exposed in the unfolded structure of cutinase. Trehalose and mannosylglycerate stabilize the folded state relative to the intermediate by 1.4–1.6 and 1.6 kcal/mol and the intermediate relative to the unfolded state by 1.0 and 1.5 kcal/mol, respectively. Proteins 2001;42:542–552.


Biotechnology and Bioengineering | 2000

Trehalose delays the reversible but not the irreversible thermal denaturation of cutinase

R. Baptista; J. M. S. Cabral; Eduardo P. Melo

The effect of trehalose (0.5 M) on the thermal stability of cutinase in the alkaline pH range was studied. The thermal unfolding induced by increasing temperature was analyzed in the absence and in the presence of trehalose according to a two-state model (which assumes that only the folded and unfolded states of cutinase were present). Trehalose delays the reversible unfolding. The midpoint temperature of the unfolding transition (Tm) increases by 4.0 degrees C and 2. 6 degrees C at pH 9.2 and 10.5, respectively, in the presence of trehalose. At pH 9.2 the thermal unfolding occurs at higher temperatures (Tm is 52.6 degrees C compared to 42.0 degrees C at pH 10.5) and a refolding yield of around 80% was obtained upon cooling. This pH value was chosen to study the irreversible inactivation (long-term stability) of cutinase. Temperatures in the transition range from folded to unfolded state were selected and the rate constants of irreversible inactivation determined. Inactivation followed first-order kinetics and trehalose reduced the observed rate constants of inactivation, pointing to a stabilizing effect on the irreversible inactivation step of thermal denaturation. However, if the contribution of reversible unfolding on the irreversible inactivation of cutinase was taken into account, i.e., considering the fraction of cutinase molecules in the reversible unfolded conformation, the intrinsic rate constants can be calculated. Based on the intrinsic rate constants it was concluded that trehalose does not delay the irreversible inactivation. This conclusion was further supported by comparing the activation energy of the irreversible inactivation in the absence and in the presence of trehalose. The apparent activation energy in the absence and in the presence of trehalose were 67 and 99 Kcal/mol, respectively. The activation energy calculated from intrinsic rate constants was higher in the absence (30 Kcal/mol) than in the presence of trehalose (16 Kcal/mol), showing that kinetics of the irreversible inactivation step increased in the presence of trehalose. In fact, trehalose stabilized only the reversible step of thermal denaturation of cutinase.


Chemistry and Physics of Lipids | 2000

Dynamic light scattering of cutinase in AOT reverse micelles.

Eduardo P. Melo; Peter Fojan; J. M. S. Cabral; Steffen B. Petersen

The fungal lipolytic enzyme cutinase, incorporated into sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles has been investigated using dynamic light scattering. The reversed micelles form spontaneously when water is added to a solution of sodium bis-(2ethylhexyl) sulfosuccinate in isooctane. When an enzyme is previously dissolved in the water before its addition to the organic phase, the enzyme will be incorporated into the micelles. Enzyme encapsulation in reversed micelles can be advantageous namely to the conversion of water insoluble substrates and to carry out synthesis reactions. However protein unfolding occurs in several systems as for cutinase in sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles. Dynamic light scattering measurements of sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles with and without cutinase were taken at different water to surfactant ratios. The results indicate that cutinase was attached to the micellar wall and that might cause cutinase unfolding. The interactions between cutinase and the bis-(2ethylhexyl) sulfosuccinate interface are probably the driving force for cutinase unfolding at room temperature. Twenty-four hours after encapsulation, when cutinase is unfolded, a bimodal distribution was clearly observed. The radii of reversed micelles with unfolded cutinase were determined and found to be considerable larger than the radii of the empty reversed micelles. The majority of the reversed micelles were empty (90-96% of mass) and the remainder (4-10%) containing unfolded cutinase were larger by 26-89 A.


Journal of Molecular Catalysis B-enzymatic | 2003

Improving cutinase stability in aqueous solution and in reverse micelles by media engineering

Eduardo P. Melo; R. Baptista; J. M. S. Cabral

Abstract The stability of a recombinant cutinase from the fungus Fusarium solani was evaluated in aqueous media and in reverse micelles. Thermal unfolding in aqueous solution is a two-state process at the pH values tested and trehalose increased the temperature at the mid-point of the unfolding transitions. Irreversible inactivation is a first-order process at pH 9.2, but two inactivation phases were resolved at pH 4.5. Trehalose did not change the irreversible inactivation pathway but increased the kinetics of the irreversible inactivation step. Unfolding of cutinase induced by guanidine hydrochloride was more complex, showing a stable intermediate, molten globule in character, within the transition region. Trehalose did not change the three-state nature of the unfolding process. Encapsulation of cutinase in AOT reverse micelles induced unfolding at room temperature due to an enzyme location at the micellar interface. The presence of 1-hexanol as co-surfactant delayed or even prevented the unfolding of cutinase by promoting the establishment of a new equilibrium in the system. Cutinase is encapsulated in a 10-fold larger AOT/hexanol reverse micelle built up by the fusion of empty reverse micelles. When tested in a membrane reactor in the presence of 1-hexanol, an operational half-life of 674 days was achieved.


eLife | 2014

Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants

Satoshi Tsunoda; Edward Avezov; Alisa Zyryanova; Tasuku Konno; Leonardo Mendes-Silva; Eduardo P. Melo; Heather P. Harding; David Ron

Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1CtoS purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER. DOI: http://dx.doi.org/10.7554/eLife.03421.001


Biotechnology and Bioengineering | 1998

Deactivation and conformational changes of cutinase in reverse micelles

Eduardo P. Melo; Cristina Carvalho; M.R. Aires-Barros; Sílvia M. B. Costa; J. M. S. Cabral

Deactivation data and fluorescence intensity changes were used to probe functional and structural stability of cutinase in reverse micelles. A fast deactivation of cutinase in anionic (AOT) reverse micelles occurs due to a reversible denaturation process. The deactivation and denaturation of cutinase is slower in small cationic (CTAB/1-hexanol) reverse micelles and does not occur when the size of the cationic reverse micellar water-pool is larger than cutinase. In both systems, activity loss and denaturation are coupled processes showing the same trend with time. Denaturation is probably caused by the interaction between the enzyme and the surfactant interface of the reversed micelle. When the size of the empty reversed micelle water-pool is smaller than cutinase (at W0 5, with W0 being the water:surfactant concentration ratio) a three-state model describes denaturation and deactivation with an intermediate conformational state existing on the path from native to denaturated cutinase. This intermediate was clearly detected by an increase in activity and shows only minor conformational changes relative to the native state. At W0 20, the size of the empty water-pool was larger than cutinase and the data was well described by a two-state model for both anionic and cationic reverse micelles. For AOT reverse micelles at W0 20, the intermediate state became a transient state and the deactivation and denaturation were described by a two-state model in which only native and denaturated cutinase were present. For CTAB/1-hexanol reverse micelles at W0 20, the native cutinase was in equilibrium with an intermediate state, which did not suffer denaturation. 1-Hexanol showed a stabilizing effect on cutinase in reverse micelles, contributing to the higher stabilities observed in the cationic CTAB/1-hexanol reverse micelles. Copyright 1998 John Wiley & Sons, Inc.


Biopolymers | 2008

Thermodynamics and mechanism of cutinase stabilization by trehalose

R. Baptista; Shona Pedersen; Gonçalo J.M. Cabrita; Daniel E. Otzen; J. M. S. Cabral; Eduardo P. Melo

Trehalose has been widely used to stabilize cellular structures such as membranes and proteins. The effect of trehalose on the stability of the enzyme cutinase was studied. Thermal unfolding of cutinase reveals that trehalose delays thermal unfolding, thus increasing the temperature at the midpoint of unfolding by 7.2°. Despite this stabilizing effect, trehalose also favors pathways that lead to irreversible denaturation. Stopped‐flow kinetics of cutinase folding and unfolding was measured and temperature was introduced as experimental variable to assess the mechanism and thermodynamics of protein stabilization by trehalose. The main stabilizing effect of trehalose was to delay the rate constant of the unfolding of an intermediate. A full thermodynamic analysis of this step has revealed that trehalose induces the phenomenon of entropy–enthalpy compensation, but the enthalpic contribution increases more significantly leading to a net stabilizing effect that slows down unfolding of the intermediate. Regarding the molecular mechanism of stabilization, trehalose increases the compactness of the unfolded state. The conformational space accessible to the unfolded state decreases in the presence of trehalose when the unfolded state acquires residual native interactions that channel the folding of the protein. This residual structure results into less hydrophobic groups being newly exposed upon unfolding, as less water molecules are immobilized upon unfolding.

Collaboration


Dive into the Eduardo P. Melo's collaboration.

Top Co-Authors

Avatar

J. M. S. Cabral

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

M.R. Aires-Barros

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Lígia O. Martins

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

André Fernandes

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

R. Baptista

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Carlos Lopes

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Carvalho

Instituto Superior Técnico

View shared research outputs
Researchain Logo
Decentralizing Knowledge