Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo P. Olaguer is active.

Publication


Featured researches published by Eduardo P. Olaguer.


Journal of The Air & Waste Management Association | 2012

The potential near-source ozone impacts of upstream oil and gas industry emissions

Eduardo P. Olaguer

Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also of formaldehyde, a hazardous air pollutant and powerful ozone precursor. We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity of a hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour of natural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhat further (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution. Implications: Major metropolitan areas in or near shale formations will be hard pressed to demonstrate future attainment of the federal ozone standard, unless significant controls are placed on emissions from increased oil and gas exploration and production. The results presented here show the importance of improving the temporal and spatial resolution of both emission inventories and air quality models used in ozone attainment demonstrations for areas with significant oil and gas activities. Supplemental Materials: Supplemental materials are available for this article. Go to the publishers online edition of the Journal of the Air & Waste Management Association for further technical details on the HARC model chemical mechanism and its performance evaluation.


Journal of The Air & Waste Management Association | 2009

Deciphering the role of radical precursors during the Second Texas Air Quality Study.

Eduardo P. Olaguer; Bernhard Rappenglück; Barry Lefer; J. Stutz; Jack E. Dibb; Robert J. Griffin; William H. Brune; Maxwell Shauck; M. P. Buhr; Harvey E. Jeffries; William Vizuete; Joseph P. Pinto

Abstract The Texas Environmental Research Consortium (TERC) funded significant components of the Second Texas Air Quality Study (TexAQS II), including the TexAQS II Radical and Aerosol Measurement Project (TRAMP) and instrumented flights by a Piper Aztec aircraft. These experiments called attention to the role of short-lived radical sources such as formaldehyde (HCHO) and nitrous acid (HONO) in increasing ozone productivity. TRAMP instruments recorded daytime HCHO pulses as large as 32 parts per billion (ppb) originating from upwind industrial activities in the Houston Ship Channel, where in situ surface monitors detected HCHO peaks as large as 52 ppb. Moreover, Ship Channel petrochemical flares were observed to produce plumes of apparent primary HCHO. In one such combustion plume that was depleted of ozone by large emissions of oxides of nitrogen (NOx), the Piper Aztec measured a ratio of HCHO to carbon monoxide (CO) 3 times that of mobile sources. HCHO from uncounted primary sources or ozonolysis of underestimated olefin emissions could significantly increase ozone productivity in Houston beyond previous expectations. Simulations with the CAMx model show that additional emissions of HCHO from industrial flares or mobile sources can increase peak ozone in Houston by up to 30 ppb. Other findings from TexAQS II include significant concentrations of HONO throughout the day, well in excess of current air quality model predictions, with large nocturnal vertical gradients indicating a surface or near-surface source of HONO, and large concentrations of nighttime radicals (∼30 parts per trillion [ppt] HO2). HONO may be formed heterogeneously on urban canopy or particulate matter surfaces and may be enhanced by organic aerosol of industrial or motor vehicular origin, such as through conversion of nitric acid (HNO3). Additional HONO sources may increase daytime ozone by more than 10 ppb. Improving the representation of primary and secondary HCHO and HONO in air quality models could enhance the simulated effectiveness of control strategies.


Journal of The Air & Waste Management Association | 2012

Near-source air quality impacts of large olefin flares

Eduardo P. Olaguer

Large petrochemical flares, common in the Houston Ship Channel (the Ship Channel) and other industrialized areas in the Gulf of Mexico region, emit hundreds to thousands of pounds per hour of highly reactive volatile organic compounds (HRVOCs). We employed fine horizontal resolution (200 m × 200 m) in a three-dimensional (3D) Eulerian chemical transport model to simulate two historical Ship Channel flares. The model reasonably reproduced the observed ozone rise at the nearest monitoring stations downwind of the flares. The larger of the two flares had an olefin emission rate exceeding 1400 lb/hr. In this case, the model simulated a rate of increase in peak ozone greater than 40 ppb/hr over a 12 km × 12 km horizontal domain without any unusual meteorological conditions. In this larger flare, formaldehyde emissions typically neglected in official inventories enhanced peak ozone by as much as 16 ppb and contributed over 10 ppb to ambient formaldehyde up to ∼8 km downwind of the flare. The intense horizontal gradients in large flare plumes cannot be simulated by coarse models typically used to demonstrate ozone attainment. Moreover, even the relatively dense monitoring network in the Ship Channel may not be able to detect many transient high ozone events (THOEs) caused by industrial flare emissions in the absence of stagnant air recirculation or stalled sea breeze fronts, even though such conditions are unnecessary for the occurrence of THOEs. Implications: Flare minimization may be an important strategy to attain the U.S. federal ozone standard in industrialized areas, and to avoid inordinate exposure to formaldehyde in neighborhoods surrounding petrochemical facilities. Moreover, air quality monitoring networks, emission inventories, and chemical transport models with higher spatial and temporal resolution and more refined speciation of HRVOCs are needed to better account for the near-source air quality impacts of large olefin flares.


Journal of Geophysical Research | 2014

Overview of the SHARP campaign: Motivation, design, and major outcomes

Eduardo P. Olaguer; Charles E. Kolb; Barry Lefer; Bernhard Rappenglück; Renyi Zhang; Joseph P. Pinto

The Study of Houston Atmospheric Radical Precursors (SHARP) was a field campaign developed by the Houston Advanced Research Center on behalf of the Texas Environmental Research Consortium. SHARP capitalized on previous research associated with the Second Texas Air Quality Study and the development of the State Implementation Plan (SIP) for the Houston-Galveston-Brazoria (HGB) ozone nonattainment area. These earlier studies pointed to an apparent deficit in ozone production in the SIP attainment demonstration model despite the enhancement of simulated emissions of highly reactive volatile organic compounds in accordance with the findings of the original Texas Air Quality Study in 2000. The scientific hypothesis underlying the SHARP campaign was that there are significant undercounted primary and secondary sources of the radical precursors, formaldehyde, and nitrous acid, in both heavily industrialized and more typical urban areas of Houston. These sources, if properly taken into account, could increase the production of ozone in the SIP model and the simulated efficacy of control strategies designed to bring the HGB area into ozone attainment. This overview summarizes the precursor studies and motivations behind SHARP, as well as the overall experimental design and major findings of the 2009 field campaign. These findings include significant combustion sources of formaldehyde at levels greater than accounted for in current point source emission inventories; the underestimation of formaldehyde and nitrous acid emissions, as well as CO/NOx and NO2/NOx ratios, by mobile source models; and the enhancement of nitrous acid by atmospheric organic aerosol.


Journal of The Air & Waste Management Association | 2011

Issues with Ozone Attainment Methodology for Houston, TX

William Vizuete; Harvey E. Jeffries; T.W. Tesche; Eduardo P. Olaguer; Evan Couzo

ABSTRACT To comply with the federal 8-hr ozone standard, the state of Texas is creating a plan for Houston that strictly follows the U.S. Environmental Protection Agencys (EPA) guidance for demonstrating attainment. EPAs attainment guidance methodology has several key assumptions that are demonstrated to not be completely appropriate for the unique observed ozone conditions found in Houston. Houstons ozone violations at monitoring sites are realized as gradual hour-to-hour increases in ozone concentrations, or by large hourly ozone increases that exceed up to 100 parts per billion/hr. Given the time profiles at the violating monitors and those of nearby monitors, these large increases appear to be associated with small parcels of spatially limited plumes of high ozone in a lower background of urban ozone. Some of these high ozone parcels and plumes have been linked to a combination of unique wind conditions and episodic hydrocarbon emission events from the Houston Ship Channel. However, the regulatory air quality model (AQM) does not predict these sharp ozone gradients. Instead, the AQM predicts gradual hourly increases with broad regions of high ozone covering the entire Houston urban core. The AQM model performance can be partly attributed to EPA attainment guidance that prescribes the removal in the baseline model simulation of any episodic hydrocarbon emissions, thereby potentially removing any nontypical causes of ozone exceedances. This paper shows that attainment of all monitors is achieved when days with observed large hourly variability in ozone concentrations are filtered from attainment metrics. Thus, the modeling and observational data support a second unique cause for how ozone is formed in Houston, and the current EPA methodology addresses only one of these two causes. IMPLICATIONS Observational analysis in Houston provides compelling evidence that ozone design values at some surface monitors are dominantly influenced by large hourly changes in ozone concentration that are not predicted by the regulatory model. The use of these models, with current EPA attainment methodology, produces policies that likely overestimate precursor control requirements because only one cause of ozone is functioning in the model. This issue has significant regulatory and economic implications for Houston, especially under lower National Ambient Air Quality Standards. An attainment methodology that recognizes two unique causes for high ozone potentially offers a more reliable means for developing and justifying control policies.


Journal of The Air & Waste Management Association | 2016

Updated methods for assessing the impacts of nearby gas drilling and production on neighborhood air quality and human health

Eduardo P. Olaguer; Matthew Erickson; Asanga Wijesinghe; Brad Neish; Jeff Williams; John Colvin

ABSTRACT An explosive growth in natural gas production within the last decade has fueled concern over the public health impacts of air pollutant emissions from oil and gas sites in the Barnett and Eagle Ford shale regions of Texas. Commonly acknowledged sources of uncertainty are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events. These uncertainties are best addressed not by conventional monitoring and modeling technology, but by increasingly available advanced techniques for real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web. The combination of contemporary scientific and social media approaches can be used to develop a strategy to detect and quantify emission events from oil and gas facilities, alert nearby residents of these events, and collect associated human health data, all in real time or near-real time. The various technical elements of this strategy are demonstrated based on the results of past, current, and planned future monitoring studies in the Barnett and Eagle Ford shale regions. Implications: Resources should not be invested in expanding the conventional air quality monitoring network in the vicinity of oil and gas exploration and production sites. Rather, more contemporary monitoring and data analysis techniques should take the place of older methods to better protect the health of nearby residents and maintain the integrity of the surrounding environment.


Journal of The Air & Waste Management Association | 2016

Source Attribution and Quantification of Benzene Event Emissions in a Houston Ship Channel Community Based on Real Time Mobile Monitoring of Ambient Air.

Eduardo P. Olaguer; Matthew Erickson; Asanga Wijesinghe; Bradley S. Neish

ABSTRACT A mobile laboratory equipped with a proton transfer reaction mass spectrometer (PTR-MS) operated in Galena Park, Texas, near the Houston Ship Channel during the Benzene and other Toxics Exposure Study (BEE-TEX). The mobile laboratory measured transient peaks of benzene of up to 37 ppbv in the afternoon and evening of February 19, 2015. Plume reconstruction and source attribution were performed using the four-dimensional (4D) variational data assimilation technique and a three-dimensional (3D) micro-scale forward and adjoint air quality model based on mobile PTR-MS data and nearby stationary wind measurements at the Galena Park Continuous Air Monitoring Station (CAMS). The results of inverse modeling indicate that significant pipeline emissions of benzene may at least partly explain the ambient concentration peaks observed in Galena Park during BEE-TEX. Total pipeline emissions of benzene inferred within the 16-km2 model domain exceeded point source emissions by roughly a factor of 2 during the observational episode. Besides pipeline leaks, the model also inferred significant benzene emissions from marine, railcar, and tank truck loading/unloading facilities, consistent with the presence of a tanker and barges in the Kinder Morgan port terminal during the afternoon and evening of February 19. Total domain emissions of benzene exceeded corresponding 2011 National Emissions Inventory (NEI) estimates by a factor of 2–6. Implications: Port operations involving petrochemicals may significantly increase emissions of air toxics from the transfer and storage of materials. Pipeline leaks, in particular, can lead to sporadic emissions greater than in emission inventories, resulting in higher ambient concentrations than are sampled by the existing monitoring network. The use of updated methods for ambient monitoring and source attribution in real time should be encouraged as an alternative to expanding the conventional monitoring network.


Journal of The Air & Waste Management Association | 2016

Microscale air quality impacts of distributed power generation facilities.

Eduardo P. Olaguer; Eladio M. Knipping; Stephanie L. Shaw; Satish Ravindran

ABSTRACT The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m3 for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10–50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m3. Implications: Plausible scenarios of distributed fossil generation consistent with the electricity grid’s transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on a localized scale. In particular, natural gas turbines typically used in distributed generation may have minor effects. Large banks of diesel backup generators such as those used by data centers, on the other hand, may require pollution controls or conversion to natural gas-fired reciprocal internal combustion engines to decrease nitrogen dioxide pollution.


Journal of The Air & Waste Management Association | 2015

Vehicle emissions of radical precursors and related species observed in the 2009 SHARP campaign

J. Wormhoudt; E. C. Wood; W. B. Knighton; Charles E. Kolb; Scott C. Herndon; Eduardo P. Olaguer

The 2009 Study of Houston Atmospheric Radical Precursors (SHARP) field campaign had several components that yielded information on the primary vehicular emissions of formaldehyde (HCHO) and nitrous acid (HONO), in addition to many other species. Analysis of HONO measurements at the Moody Tower site in Houston, TX, yielded emission ratios of HONO to the vehicle exhaust tracer species NOx and CO of 14 pptv/ppbv and 2.3 pptv/ppbv, somewhat smaller than recently published results from the Galleria site, although evidence is presented that the Moody Tower values should be upper limits to the true ratios of directly emitted HONO, and are consistent with ratios used in current standard emissions models. Several other Moody Tower emission ratios are presented, in particular a value for HCHO/CO of 2.4 pptv/ppbv. Considering only estimates of random errors, this would be significantly lower than a previous value, though the small sample size and possible systematic differences should be taken into account. Emission factors for CO, NOx, and HCHO, as well as various volatile organic compounds (VOCs), were derived from mobile laboratory measurements both in the Washburn Tunnel and in on-road exhaust plume observations. These two sets of results and others reported in the literature all agree well, and are substantially larger than the CO, NOx, and HCHO emission factors derived from the emission ratios reported from the Galleria site. Implications: Emission factors for the species measured in the various components of the 2009 SHARP campaign in Houston, TX, including HCHO, HONO, CO, CO2, nitrogen oxides, and VOCs, are needed to support regional air quality monitoring. Components of the SHARP campaign measured these species in several different ways, each with their own potential for systematic errors and differences in vehicle fleets sampled. Comparisons between data sets suggest that differences in sampling place and time may result in quite different emission factors, while also showing that different vehicle mixes can yield surprisingly similar emission factors.


Atmospheric Impacts of the Oil and Gas Industry | 2017

Chapter 12 – Emission Controls

Eduardo P. Olaguer

This chapter summarizes various technologies and practices for the control of emissions from oil and gas sources, including the US EPA’s updated New Source Performance Standards (NSPS). Control options for fugitive sources include leak detection and repair (LDAR), the use of low-bleed controllers and electricity-driven pumps, suppression and/or recovery of storage tank vapors, green completions, plunger lift systems for liquids unloading, and the use of composite wraps and flexible plastic liners for natural gas pipelines. Control options for combustion sources include automatic air-to-fuel ratio controllers in gas-fired stationary internal combustion (IC) engines, catalytic emission control systems, diesel particulate filters (DPFs), and flare minimization. A 40% reduction in on-shore methane emissions from the natural gas supply chain is achievable with existing technologies at a net total cost of

Collaboration


Dive into the Eduardo P. Olaguer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Stutz

University of California

View shared research outputs
Top Co-Authors

Avatar

Joseph P. Pinto

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Asanga Wijesinghe

Houston Advanced Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex E. Cuclis

Houston Advanced Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birnur Buzcu Guven

Houston Advanced Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge