Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward C.V. Butler is active.

Publication


Featured researches published by Edward C.V. Butler.


Marine Environmental Research | 2010

Mercury in 16 demersal sharks from southeast Australia: Biotic and abiotic sources of variation and consumer health implications

Heidi Pethybridge; Daniel Cossa; Edward C.V. Butler

Total mercury (THg) and monomethylmercury (MMHg) concentrations were determined in the tissues of demersal shark (Order Squaliformes and the Families: Scyliorhinidae, Hexanchidae) and chimaera species (Families: Chimaeridae and Rhinochimaeridae) from continental shelf and slope waters off southeast Australia, including embryos, juveniles and adults. The distribution of THg in various tissues (muscle, liver, kidney and skin), examined in ten species, shows higher levels in the muscle tissue (1.49+/-0.47mgkg(-1), ww), which accounted for between 59% and 82% of the total body burden of mercury and in the kidney (0.93+/-0.14mgkg(-1), ww) and liver (0.61+/-0.25mgkg(-1), ww) with lower levels observed in the skin (0.12+/-0.06mgkg(-1), ww). Additional THg determinations were performed in the muscle tissue of five other species allowing geographical and inter-specific comparisons. Speciation analysis demonstrated that more than 90% mercury was bound in muscle tissue as MMHg with higher percentages (>95%) observed in sharks species occupying deeper environments. Species differences were observed. Highest THg levels in the muscle tissue (up to 6.64mgkg(-1) wet weight, ww) were recorded in Proscymnodon plunketi and Centrophorus zeehaani (mean values; 4.47+/-1.20 and 3.52+/-0.07mgkg(-1), ww, respectively). Consistent with the ongoing paradigm on mercury bioaccumulation, we systematically observed THg concentrations increasing with animal size from the embryos to the larger sharks. Embryos of Etmopterus baxteri and Centroselachus crepidater had average levels 0.28 and 0.06mgkg(-1) (ww), while adult specimens reached 3.3 and 2.3mgkg(-1) (ww), respectively. THg concentrations in Australian sharks were compared with the same genus collected in other world regions. Levels were closer to data reported for East Atlantic than for the epicontinental Mediterranean margins. At a smaller geographical scale, the habitat effect on mercury concentration in sharks seems less clear. Squalid sharks occupying shelf waters showed higher mean mercury levels relative to their size (body weight, bw) than mid-slope species (0.4-6.7mgkg(-1) bw and 0.3-2.2mgkg(-1) bw, respectively). However, local regional differences (East and South Tasmania vs. Victoria) in Hg levels were not detected for the majority of taxa examined. All species, with the exception of Figaro boardmani showed values greater than 0.5mgkg(-1) (ww) and all but four were above many international regulatory thresholds (1.0mgkg(-1), ww).


Frontiers in Microbiology | 2012

Exploring the Link between Micronutrients and Phytoplankton in the Southern Ocean during the 2007 Austral Summer

Christel S. Hassler; Marie Sinoir; Lesley Clementson; Edward C.V. Butler

Bottle assays and large-scale fertilization experiments have demonstrated that, in the Southern Ocean, iron often controls the biomass and the biodiversity of primary producers. To grow, phytoplankton need numerous other trace metals (micronutrients) required for the activity of key enzymes and other intracellular functions. However, little is known of the potential these other trace elements have to limit the growth of phytoplankton in the Southern Ocean. This study, investigates whether micronutrients other than iron (Zn, Co, Cu, Cd, Ni) need to be considered as parameters for controlling the phytoplankton growth from the Australian Subantarctic to the Polar Frontal Zones during the austral summer 2007. Analysis of nutrient disappearance ratios, suggested differential zones in phytoplankton growth control in the study region with a most intense phytoplankton growth limitation between 49 and 50°S. Comparison of micronutrient disappearance ratios, metal distribution, and biomarker pigments used to identify dominating phytoplankton groups, demonstrated that a complex interaction between Fe, Zn, and Co might exist in the study region. Although iron remains the pivotal micronutrient for phytoplankton growth and community structure, Zn and Co are also important for the nutrition and the growth of most of the dominating phytoplankton groups in the Subantarctic Zone region. Understanding of the parameters controlling phytoplankton is paramount, as it affects the functioning of the Southern Ocean, its marine resources and ultimately the global carbon cycle.


Journal of Phycology | 2012

PHYTOPLANKTON SELENIUM REQUIREMENTS: THE CASE FOR SPECIES ISOLATED FROM TEMPERATE AND POLAR REGIONS OF THE SOUTHERN HEMISPHERE†

Bronwyn D. Wake; Christel S. Hassler; Andrew R. Bowie; Paul R. Haddad; Edward C.V. Butler

A series of laboratory culture experiments was used to investigate the effect of selenium (Se, 0–10 nM) on the growth, cellular volume, photophysiology, and pigments of two temperate and four polar oceanic phytoplankton species [coccolithophore Emiliania huxleyi (Lohmann) W. W. Hay et H. P. Mohler, cyanobacterium Synechococcus sp., prymnesiophyte Phaeocystis sp., and three diatoms—Fragilariopsis cylindrus (Grunow) Kriegar, Chaetoceros sp., and Thalassiosira antarctica G. Karst.]. Only Synechoccocus sp. and Phaeocystis sp. did not show any requirement for Se. Under Se‐deficient conditions, the growth rate of E. huxleyi was decreased by 1.6‐fold, whereas cellular volume was increased by 1.9‐fold. Se limitation also decreased chl a (2.5‐fold), maximum relative electron transport rate (1.9‐fold), and saturating light intensity (2.8‐fold), suggesting that Se plays a role in photosynthesis or high‐light acclimation. Pigment analysis for Antarctic taxa provided an interesting counterpoint to the physiology of E. huxleyi. For all Se‐dependent Antarctic diatoms, Se limitation decreased growth rate and chl a content, whereas cellular volume was not affected. Pigment analysis revealed that other pigments were affected under Se deficiency. Photoprotective pigments increased by 1.4‐fold, while diadinoxanthin:diatoxanthin ratios decreased by 1.5‐ to 4.9‐fold under Se limitation, supporting a role for Se in photoprotection. Our results demonstrate an Se growth requirement for polar diatoms and indicate that Se could play a role in the biogeochemical cycles of other nutrients, such as silicic acid in the Southern Ocean. Se measurements made during the austral summer in the Southern Ocean and Se biological requirement were used to discuss possible Se limitation in phytoplankton from contrasting oceanographic regions.


Analytical Methods | 2011

Fast and sensitive determination of aluminium with RP-HPLC using an ultra-short monolithic column

Tomas Remenyi; Pavel N. Nesterenko; Andrew R. Bowie; Edward C.V. Butler; Paul R. Haddad

A fast and sensitive reversed-phase high-performance liquid-chromatographic method for determination of aluminium in aqueous samples has been developed. The fluorescent aluminium-lumogallion complex (λex 505 nm, λem 574 nm), was formed with a pre-column reagent and then separated on a Chromolith® RP-18e Guard column using a two-tiered, stepped gradient program, with matrix elimination (5/95 (v/v) methanol/water), followed by elution (90/10 (v/v) methanol/water). This method achieved a run time of 2.5 min without compromising sensitivity (limit of detection = 5.6 × 10−10 M, limit of quantification = 7.2 × 10−7 M), precision (3.5% at 3.71 × 10−6 M) or accuracy (recovery = 97.5% ± 3.2%, n = 5, P = 0.95). This represents an improvement in run time by >50% compared to the fastest previously published method [Lee et al., Clin. Chem., 1996, 42, 1405–1411]. This method uses MES buffer (2-(N-morpholino)ethanesulfonic acid), which compared to other buffers is more easily purified, does not complex with aluminium, and can be used in lower concentrations. This method was applied to analysis of: deionised water for column comparison; seawater for matrix interference effects; and tea-infusion for calibration and recovery studies.


Harmful Algae | 2006

Vertical migration of the toxic dinoflagellate Gymnodinium catenatum under different concentrations of nutrients and humic substances in culture

Martina A. Doblin; Peter A. Thompson; Andrew T. Revill; Edward C.V. Butler; Susan I. Blackburn; Gustaaf M. Hallegraeff


Polar Biology | 2003

Mercury in the marine food chain in the Southern Ocean at Macquarie Island: an analysis of a top predator, Patagonian toothfish (Dissostichus eleginoides) and a mid-trophic species, the warty squid (Moroteuthis ingens)

Tertia McArthur; Edward C.V. Butler; George D. Jackson


Marine Chemistry | 2013

Measurement of iron chemical speciation in seawater at 4 °C: The use of competitive ligand exchange–adsorptive cathodic stripping voltammetry

Christel S. Hassler; François-Eric Legiret; Edward C.V. Butler


Marine and Freshwater Research | 2010

Lipid and mercury profiles of 61 mid-trophic species collected off south-eastern Australia

Heidi Pethybridge; Ross K. Daley; Patti Virtue; Edward C.V. Butler; Daniel Cossa; Peter D. Nichols


Marine Chemistry | 2013

Trace metals Cd, Co, Cu, Ni, and Zn in waters of the subantarctic and Polar Frontal Zones south of Tasmania during the 'SAZ-Sense' project

Edward C.V. Butler; Jeanette E. O’Sullivan; Roslyn J. Watson; Andrew R. Bowie; Tomas Remenyi; Delphine Lannuzel


Limnology and Oceanography-methods | 2012

Reversed phase high performance liquid chromatographic determination of dissolved aluminium in open ocean seawater

Tomas Remenyi; Pavel N. Nesterenko; Andrew R. Bowie; Edward C.V. Butler; Paul R. Haddad

Collaboration


Dive into the Edward C.V. Butler's collaboration.

Top Co-Authors

Avatar

Andrew R. Bowie

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew T. Revill

CSIRO Marine and Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge