Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward D. Lamperti is active.

Publication


Featured researches published by Edward D. Lamperti.


Nature | 2010

Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2

Myunggon Ko; Yun Huang; Anna M. Jankowska; Utz J. Pape; Mamta Tahiliani; Hozefa S. Bandukwala; Jungeun An; Edward D. Lamperti; Kian Peng Koh; Rebecca Ganetzky; X. Shirley Liu; L. Aravind; Suneet Agarwal; Jaroslaw P. Maciejewski; Anjana Rao

TET2 is a close relative of TET1, an enzyme that converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. The gene encoding TET2 resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies. Somatic TET2 mutations are frequently observed in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes including chronic myelomonocytic leukaemia (CMML), acute myeloid leukaemias (AML) and secondary AML (sAML). We show here that TET2 mutations associated with myeloid malignancies compromise catalytic activity. Bone marrow samples from patients with TET2 mutations displayed uniformly low levels of 5hmC in genomic DNA compared to bone marrow samples from healthy controls. Moreover, small hairpin RNA (shRNA)-mediated depletion of Tet2 in mouse haematopoietic precursors skewed their differentiation towards monocyte/macrophage lineages in culture. There was no significant difference in DNA methylation between bone marrow samples from patients with high 5hmC versus healthy controls, but samples from patients with low 5hmC showed hypomethylation relative to controls at the majority of differentially methylated CpG sites. Our results demonstrate that Tet2 is important for normal myelopoiesis, and suggest that disruption of TET2 enzymatic activity favours myeloid tumorigenesis. Measurement of 5hmC levels in myeloid malignancies may prove valuable as a diagnostic and prognostic tool, to tailor therapies and assess responses to anticancer drugs.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice

Myung Gon Ko; Hozefa S. Bandukwala; Jungeun An; Edward D. Lamperti; Elizabeth C. Thompson; Ryan Hastie; Angeliki Tsangaratou; Klaus Rajewsky; Sergei B. Koralov; Anjana Rao

The Ten-Eleven-Translocation 2 (TET2) gene encodes a member of TET family enzymes that alters the epigenetic status of DNA by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Somatic loss-of-function mutations of TET2 are frequently observed in patients with diverse myeloid malignancies, including myelodysplastic syndromes, myeloproliferative neoplasms, and chronic myelomonocytic leukemia. By analyzing mice with targeted disruption of the Tet2 catalytic domain, we show here that Tet2 is a critical regulator of self-renewal and differentiation of hematopoietic stem cells (HSCs). Tet2 deficiency led to decreased genomic levels of 5hmC and augmented the size of the hematopoietic stem/progenitor cell pool in a cell-autonomous manner. In competitive transplantation assays, Tet2-deficient HSCs were capable of multilineage reconstitution and possessed a competitive advantage over wild-type HSCs, resulting in enhanced hematopoiesis into both lymphoid and myeloid lineages. In vitro, Tet2 deficiency delayed HSC differentiation and skewed development toward the monocyte/macrophage lineage. Our data indicate that Tet2 has a critical role in regulating the expansion and function of HSCs, presumably by controlling 5hmC levels at genes important for the self-renewal, proliferation, and differentiation of HSCs.


Molecular and Cellular Biology | 2008

Hair loss and defective T- and B-cell function in mice lacking ORAI1

Yousang Gwack; Sonal Srikanth; Masatsugu Oh-hora; Patrick G. Hogan; Edward D. Lamperti; Megumi Yamashita; Curtis Gelinas; Daniel S. Neems; Yoshiteru Sasaki; Stefan Feske; Murali Prakriya; Klaus Rajewsky; Anjana Rao

ABSTRACT ORAI1 is a pore subunit of the store-operated Ca2+ release-activated Ca2+ (CRAC) channel. To examine the physiological consequences of ORAI1 deficiency, we generated mice with targeted disruption of the Orai1 gene. The results of immunohistochemical analysis showed that ORAI1 is expressed in lymphocytes, skin, and muscle of wild-type mice and is not expressed in Orai1−/− mice. Orai1−/− mice with the inbred C57BL/6 background showed perinatal lethality, which was overcome by crossing them to outbred ICR mice. Orai1−/− mice were small in size, with eyelid irritation and sporadic hair loss resembling the cyclical alopecia observed in mice with keratinocyte-specific deletion of the Cnb1 gene. T and B cells developed normally in Orai1−/− mice, but B cells showed a substantial decrease in Ca2+ influx and cell proliferation in response to B-cell receptor stimulation. Naïve and differentiated Orai1−/− T cells showed substantial reductions in store-operated Ca2+ entry, CRAC currents, and cytokine production. These features are consistent with the severe combined immunodeficiency and mild extraimmunological symptoms observed in a patient with a missense mutation in human ORAI1 and distinguish the ORAI1-null mice described here from a previously reported Orai1 gene-trap mutant mouse which may be a hypomorph rather than a true null.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors

Hozefa S. Bandukwala; John Gagnon; Susan Togher; Jason Greenbaum; Edward D. Lamperti; Nigel James Parr; Amy M. H. Molesworth; Nicholas Smithers; Kevin Lee; Jason Witherington; David F. Tough; Rab K. Prinjha; Bjoern Peters; Anjana Rao

Bromodomain-containing proteins bind acetylated lysine residues on histone tails and are involved in the recruitment of additional factors that mediate histone modifications and enable transcription. A compound, I-BET-762, that inhibits binding of an acetylated histone peptide to proteins of the bromodomain and extra-terminal domain (BET) family, was previously shown to suppress the production of proinflammatory proteins by macrophages and block acute inflammation in mice. Here, we investigated the effect of short-term treatment with I-BET-762 on T-cell function. Treatment of naïve CD4+ T cells with I-BET-762 during the first 2 d of differentiation had long-lasting effects on subsequent gene expression and cytokine production. Gene expression analysis revealed up-regulated expression of several antiinflammatory gene products, including IL-10, Lag3, and Egr2, and down-regulated expression of several proinflammatory cytokines including GM-CSF and IL-17. The short 2-d treatment with I-BET-762 inhibited the ability of antigen-specific T cells, differentiated under Th1 but not Th17 conditions in vitro, to induce pathogenesis in an adoptive transfer model of experimental autoimmune encephalomyelitis. The suppressive effects of I-BET-762 on T-cell mediated inflammation in vivo were accompanied by decreased recruitment of macrophages, consistent with decreased GM-CSF production by CNS-infiltrating T cells. These effects were mimicked by an inhibitor of c-myc function, implicating reduced expression of c-myc and GM-CSF as one avenue by which I-BET-762 suppresses the inflammatory functions of T cells. Our study demonstrates that inhibiting the functions of BET-family proteins during early T-cell differentiation causes long-lasting suppression of the proinflammatory functions of Th1 cells.


Immunity | 2015

The transcription factor NFAT promotes exhaustion of activated CD8⁺ T cells.

Gustavo J. Martinez; Renata M. Pereira; Tarmo Äijö; Edward Y. Kim; Francesco Marangoni; Matthew E. Pipkin; Susan Togher; Vigo Heissmeyer; Yi Chen Zhang; Shane Crotty; Edward D. Lamperti; K. Mark Ansel; Thorsten R. Mempel; Harri Lähdesmäki; Patrick G. Hogan; Anjana Rao

During persistent antigen stimulation, CD8(+) T cells show a gradual decrease in effector function, referred to as exhaustion, which impairs responses in the setting of tumors and infections. Here we demonstrate that the transcription factor NFAT controls the program of T cell exhaustion. When expressed in cells, an engineered form of NFAT1 unable to interact with AP-1 transcription factors diminished T cell receptor (TCR) signaling, increased the expression of inhibitory cell surface receptors, and interfered with the ability of CD8(+) T cells to protect against Listeria infection and attenuate tumor growth in vivo. We defined the genomic regions occupied by endogenous and engineered NFAT1 in primary CD8(+) T cells and showed that genes directly induced by the engineered NFAT1 overlapped with genes expressed in exhausted CD8(+) T cells in vivo. Our data show that NFAT promotes T cell anergy and exhaustion by binding at sites that do not require cooperation with AP-1.


Journal of Experimental Medicine | 2011

NFATc1 affects mouse splenic B cell function by controlling the calcineurin--NFAT signaling network.

Sankar Bhattacharyya; Jolly Deb; Amiya K. Patra; Duong Anh Thuy Pham; Wen Chen; Martin Vaeth; Friederike Berberich-Siebelt; Stefan Klein-Hessling; Edward D. Lamperti; Kurt Reifenberg; Julia Jellusova; Astrid Schweizer; Lars Nitschke; Ellen Leich; Andreas Rosenwald; Cornelia Brunner; Swen Engelmann; Ursula Bommhardt; Andris Avots; Martin Müller; Eisaku Kondo; Edgar Serfling

Mouse B cells lacking NFATc1 exhibit defective proliferation, survival, isotype class switching, cytokine production, and T cell help.


Nature Structural & Molecular Biology | 2008

Mouse Eri1 interacts with the ribosome and catalyzes 5.8S rRNA processing

K. Mark Ansel; William A. Pastor; Nicola Rath; Ariya D. Lapan; Elke Glasmacher; Christine Wolf; Laura C Smith; Nikoletta Papadopoulou; Edward D. Lamperti; Mamta Tahiliani; Joachim W. Ellwart; Yujiang Shi; Elisabeth Kremmer; Anjana Rao; Vigo Heissmeyer

Eri1 is a 3′-to-5′ exoribonuclease conserved from fission yeast to humans. Here we show that Eri1 associates with ribosomes and ribosomal RNA (rRNA). Ribosomes from Eri1–deficient mice contain 5.8S rRNA that is aberrantly extended at its 3′ end, and Eri1, but not a catalytically inactive mutant, converts this abnormal 5.8S rRNA to the wild-type form in vitro and in cells. In human and murine cells, Eri1 localizes to the cytoplasm and nucleus, with enrichment in the nucleolus, the site of preribosome biogenesis. RNA binding residues in the Eri1 SAP and linker domains promote stable association with rRNA and thereby facilitate 5.8S rRNA 3′ end processing. Taken together, our findings indicate that Eri1 catalyzes the final trimming step in 5.8S rRNA processing, functionally and spatially connecting this regulator of RNAi with the basal translation machinery.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Requirement for balanced Ca/NFAT signaling in hematopoietic and embryonic development

Martin Müller; Yoshiteru Sasaki; Irena Stevanovic; Edward D. Lamperti; Srimoyee Ghosh; Sonia Sharma; Curtis Gelinas; Derrick J. Rossi; Matthew E. Pipkin; Klaus Rajewsky; Patrick G. Hogan; Anjana Rao

NFAT transcription factors are highly phosphorylated proteins residing in the cytoplasm of resting cells. Upon dephosphorylation by the phosphatase calcineurin, NFAT proteins translocate to the nucleus, where they orchestrate developmental and activation programs in diverse cell types. NFAT is rephosphorylated and inactivated through the concerted action of at least 3 different kinases: CK1, GSK-3, and DYRK. The major docking sites for calcineurin and CK1 are strongly conserved throughout vertebrate evolution, and conversion of either the calcineurin docking site to a high-affinity version or the CK1 docking site to a low-affinity version results in generation of hyperactivable NFAT proteins that are still fully responsive to stimulation. In this study, we generated transgenic mice expressing hyperactivable versions of NFAT1 from the ROSA26 locus. We show that hyperactivable NFAT increases the expression of NFAT-dependent cytokines by differentiated T cells as expected, but exerts unexpected signal-dependent effects during T cell differentiation in the thymus, and is progressively deleterious for the development of B cells from hematopoietic stem cells. Moreover, progressively hyperactivable versions of NFAT1 are increasingly deleterious for embryonic development, particularly when normal embryos are also present in utero. Forced expression of hyperactivable NFAT1 in the developing embryo leads to mosaic expression in many tissues, and the hyperactivable proteins are barely tolerated in organs such as brain, and cardiac and skeletal muscle. Our results highlight the need for balanced Ca/NFAT signaling in hematopoietic stem cells and progenitor cells of the developing embryo, and emphasize the evolutionary importance of kinase and phosphatase docking sites in preventing inappropriate activation of NFAT.


American Journal of Hypertension | 2009

Attenuation of angiotensin II-induced hypertension and cardiac hypertrophy in transgenic mice overexpressing a type 1 receptor mutant.

Saad Ahmad; Francesca Cesana; Edward D. Lamperti; Haralambos Gavras; Jun Yu

BACKGROUND The angiotensin II (AngII) type 1 receptor (AT1) regulates cardiovascular function by activating various signal pathways. The purpose of this study was to evaluate the effects of a mutant AT1 receptor on AngII-responding blood pressure and cardiac hypertrophy in conjunction with altered AngII activation of RhoA and Akt. METHODS A mutant AT1 receptor was constructed and overexpressed in C57BL mice using a ubiquitous-expression vector pCAGGS. The phenotype and signal transduction of the transgenic (TG) mice were compared with the wild-type (WT) mice. RESULTS The TG mice showed a similar baseline phenotype as WT mice, but their blood pressure in response to continuous AngII infusion was significantly lower, as measured on days 3, 4, 7, and 14, with a difference of 20 mm Hg by day 14. There was also a significantly larger heart-to-total-body-weight ratio in the WT mice, whose heart weight (HW) was 0.441 +/- 0.008% of total body weight (BW) compared to the TG mice at 0.416 +/- 0.008%. Aortic endothelial cells isolated from these TG mice displayed an altered signaling profile, such as diminished activation of Akt and RhoA in response to AngII. In contrast, Galphaq coupling and ERK/JNK activation did not change. CONCLUSION The expression of an AT1 mutant receptor in the presence of WT receptor can effectively modulate AngII-effected signaling. Furthermore, the elimination of Akt and RhoA activation by AngII significantly reduces but does not eliminate its hypertensive effect.


Analytical Biochemistry | 1990

Generation of deletion subclones for sequencing by partial digestion with restriction endonucleases

Edward D. Lamperti; Lydia Villa-Komaroff

A method for creating a group of deletion subclones for DNA sequencing by partial digestion of M13 bacteriophage constructions is outlined. The M13 construct is linearized at a unique site and then subjected to partial digestion with a frequent-cutting restriction endonuclease. The insert is truncated at different locations. The vector DNA is also partially digested. The products of a single partial digestion are repaired, recircularized by ligation, and used for bacterial transfection to generate subclones with a spectrum of deletions in the insert; most deletions in the vector DNA will disrupt vital viral genes and will thus disappear in the transfection. The subclones are sorted by size by gel electrophoresis of single-stranded viral DNA. This method is simpler and thus may be more reliable than established subcloning schemes.

Collaboration


Dive into the Edward D. Lamperti's collaboration.

Top Co-Authors

Avatar

Anjana Rao

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jungeun An

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Klaus Rajewsky

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myunggon Ko

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Patrick G. Hogan

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar

Angeliki Tsangaratou

La Jolla Institute for Allergy and Immunology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge