Mamta Tahiliani
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mamta Tahiliani.
Science | 2009
Mamta Tahiliani; Kian Peng Koh; Yinghua Shen; William A. Pastor; Hozefa S. Bandukwala; Yevgeny Brudno; Suneet Agarwal; Lakshminarayan M. Iyer; David R. Liu; L. Aravind; Anjana Rao
Methylation Mediation Methylation of cytosine bases, 5-methylcytosine (5mC), in DNA plays an important regulatory role in mammalian genomes. Methylation patterns are often inherited across generations, but they can also be dynamic, suggesting that active DNA demethylation pathways exist. One such pathway, best characterized in plants, involves the removal of the 5mC base, and its replacement by C, via a DNA repair mechanism. Kriaucionis and Heintz (p. 929, published online 16 April) now show that, as well as 5mC in mammalian genomes, there are also significant amounts of 5-hydroxymethylcytosine (5hmC) in DNA of Purkinje neurons, which have large nuclei with apparently very little heterochromatin. Tahiliani et al. (p. 930, published online 16 April) find that the protein TET1 is capable of converting 5mC into 5hmC both in vitro and in vivo. 5-Hydroxymethylcytosine is also present in embryonic stem cells, and levels of 5hmC and TET1 show correlated variation during cell differentiation. Methylated C bases, an important epigenetic mark in genomic DNA, can be enzymically converted to 5-hydroxymethylcytosine. DNA cytosine methylation is crucial for retrotransposon silencing and mammalian development. In a computational search for enzymes that could modify 5-methylcytosine (5mC), we identified TET proteins as mammalian homologs of the trypanosome proteins JBP1 and JBP2, which have been proposed to oxidize the 5-methyl group of thymine. We show here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro. hmC is present in the genome of mouse embryonic stem cells, and hmC levels decrease upon RNA interference–mediated depletion of TET1. Thus, TET proteins have potential roles in epigenetic regulation through modification of 5mC to hmC.
Nature | 2010
Myunggon Ko; Yun Huang; Anna M. Jankowska; Utz J. Pape; Mamta Tahiliani; Hozefa S. Bandukwala; Jungeun An; Edward D. Lamperti; Kian Peng Koh; Rebecca Ganetzky; X. Shirley Liu; L. Aravind; Suneet Agarwal; Jaroslaw P. Maciejewski; Anjana Rao
TET2 is a close relative of TET1, an enzyme that converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. The gene encoding TET2 resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies. Somatic TET2 mutations are frequently observed in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes including chronic myelomonocytic leukaemia (CMML), acute myeloid leukaemias (AML) and secondary AML (sAML). We show here that TET2 mutations associated with myeloid malignancies compromise catalytic activity. Bone marrow samples from patients with TET2 mutations displayed uniformly low levels of 5hmC in genomic DNA compared to bone marrow samples from healthy controls. Moreover, small hairpin RNA (shRNA)-mediated depletion of Tet2 in mouse haematopoietic precursors skewed their differentiation towards monocyte/macrophage lineages in culture. There was no significant difference in DNA methylation between bone marrow samples from patients with high 5hmC versus healthy controls, but samples from patients with low 5hmC showed hypomethylation relative to controls at the majority of differentially methylated CpG sites. Our results demonstrate that Tet2 is important for normal myelopoiesis, and suggest that disruption of TET2 enzymatic activity favours myeloid tumorigenesis. Measurement of 5hmC levels in myeloid malignancies may prove valuable as a diagnostic and prognostic tool, to tailor therapies and assess responses to anticancer drugs.
Nature | 2011
William A. Pastor; Utz J. Pape; Yun Huang; Hope R. Henderson; Ryan Lister; Myunggon Ko; Erin M. McLoughlin; Yevgeny Brudno; Sahasransu Mahapatra; Philipp Kapranov; Mamta Tahiliani; George Q. Daley; X. Shirley Liu; Joseph R. Ecker; Patrice M. Milos; Suneet Agarwal; Anjana Rao
5-hydroxymethylcytosine (5hmC) is a modified base present at low levels in diverse cell types in mammals. 5hmC is generated by the TET family of Fe(II) and 2-oxoglutarate-dependent enzymes through oxidation of 5-methylcytosine (5mC). 5hmC and TET proteins have been implicated in stem cell biology and cancer, but information on the genome-wide distribution of 5hmC is limited. Here we describe two novel and specific approaches to profile the genomic localization of 5hmC. The first approach, termed GLIB (glucosylation, periodate oxidation, biotinylation) uses a combination of enzymatic and chemical steps to isolate DNA fragments containing as few as a single 5hmC. The second approach involves conversion of 5hmC to cytosine 5-methylenesulphonate (CMS) by treatment of genomic DNA with sodium bisulphite, followed by immunoprecipitation of CMS-containing DNA with a specific antiserum to CMS. High-throughput sequencing of 5hmC-containing DNA from mouse embryonic stem (ES) cells showed strong enrichment within exons and near transcriptional start sites. 5hmC was especially enriched at the start sites of genes whose promoters bear dual histone 3 lysine 27 trimethylation (H3K27me3) and histone 3 lysine 4 trimethylation (H3K4me3) marks. Our results indicate that 5hmC has a probable role in transcriptional regulation, and suggest a model in which 5hmC contributes to the ‘poised’ chromatin signature found at developmentally-regulated genes in ES cells.
PLOS ONE | 2010
Yun Huang; William A. Pastor; Yinghua Shen; Mamta Tahiliani; David R. Liu; Anjana Rao
Background We recently showed that enzymes of the TET family convert 5-mC to 5-hydroxymethylcytosine (5-hmC) in DNA. 5-hmC is present at high levels in embryonic stem cells and Purkinje neurons. The methylation status of cytosines is typically assessed by reaction with sodium bisulfite followed by PCR amplification. Reaction with sodium bisulfite promotes cytosine deamination, whereas 5-methylcytosine (5-mC) reacts poorly with bisulfite and is resistant to deamination. Since 5-hmC reacts with bisulfite to yield cytosine 5-methylenesulfonate (CMS), we asked how DNA containing 5-hmC behaves in bisulfite sequencing. Methodology/Principal Findings We used synthetic oligonucleotides with different distributions of cytosine as templates for generation of DNAs containing C, 5-mC and 5-hmC. The resulting DNAs were subjected in parallel to bisulfite treatment, followed by exposure to conditions promoting cytosine deamination. The extent of conversion of 5-hmC to CMS was estimated to be 99.7%. Sequencing of PCR products showed that neither 5-mC nor 5-hmC undergo C-to-T transitions after bisulfite treatment, confirming that these two modified cytosine species are indistinguishable by the bisulfite technique. DNA in which CMS constituted a large fraction of all bases (28/201) was much less efficiently amplified than DNA in which those bases were 5-mC or uracil (the latter produced by cytosine deamination). Using a series of primer extension experiments, we traced the inefficient amplification of CMS-containing DNA to stalling of Taq polymerase at sites of CMS modification, especially when two CMS bases were either adjacent to one another or separated by 1–2 nucleotides. Conclusions We have confirmed that the widely used bisulfite sequencing technique does not distinguish between 5-mC and 5-hmC. Moreover, we show that CMS, the product of bisulfite conversion of 5-hmC, tends to stall DNA polymerases during PCR, suggesting that densely hydroxymethylated regions of DNA may be underrepresented in quantitative methylation analyses.
Molecular Cell | 2000
Heidi Okamura; José Aramburu; Carmen García-Rodríguez; João P. B. Viola; Anuradha Raghavan; Mamta Tahiliani; Xiaolong Zhang; Jun Qin; Patrick G. Hogan; Anjana Rao
NFAT transcription factors are highly phosphorylated proteins that are regulated by the calcium-dependent phosphatase calcineurin. We show by mass spectrometry that NFAT1 is phosphorylated on fourteen conserved phosphoserine residues in its regulatory domain, thirteen of which are dephosphorylated upon stimulation. Dephosphorylation of all thirteen residues is required to mask a nuclear export signal (NES), cause full exposure of a nuclear localization signal (NLS), and promote transcriptional activity. An inducible phosphorylation site in the transactivation domain contributes to transcriptional activity. Our data suggest that dephosphorylation promotes NFAT1 activation by increasing the probability of an active conformation, in a manner analogous to that by which depolarization increases the open probability of voltage-gated ion channels. This conformational switch paradigm may explain modification-induced functional changes in other heavily phosphorylated proteins.
Nature | 2007
Mamta Tahiliani; Pinchao Mei; Rui Fang; Thiago Leonor; M.S. Rutenberg; Fumiko Shimizu; Jing Li; Anjana Rao; Yujiang Shi
Gene transcription is critically influenced by chromatin structure and the modification status of histone tails. Methylation of lysine residues in histone tails is dynamically regulated by the opposing activities of histone methyltransferases and histone demethylases. Here we show that JARID1C/SMCX, a JmjC-domain-containing protein implicated in X-linked mental retardation and epilepsy, possesses H3K4 tri-demethylase activity and functions as a transcriptional repressor. An SMCX complex isolated from HeLa cells contains additional chromatin modifiers (the histone deacetylases HDAC1 and HDAC2, and the histone H3K9 methyltransferase G9a) and the transcriptional repressor REST, suggesting a direct role for SMCX in chromatin dynamics and REST-mediated repression. Chromatin immunoprecipitation reveals that SMCX and REST co-occupy the neuron-restrictive silencing elements in the promoters of a subset of REST target genes. RNA-interference-mediated depletion of SMCX derepresses several of these targets and simultaneously increases H3K4 trimethylation at the sodium channel type 2A (SCN2A) and synapsin I (SYN1) promoters. We propose that loss of SMCX activity impairs REST-mediated neuronal gene regulation, thereby contributing to SMCX-associated X-linked mental retardation.
Cell Cycle | 2009
Lakshminarayan M. Iyer; Mamta Tahiliani; Anjana Rao; L. Aravind
Modified bases in nucleic acids present a layer of information that directs biological function over and beyond the coding capacity of the conventional bases. While a large number of modified bases have been identified, many of the enzymes generating them still remain to be discovered. Recently, members of the 2-oxoglutarate- and iron(II)-dependent dioxygenase superfamily, which modify diverse substrates from small molecules to biopolymers, were predicted and subsequently confirmed to catalyze oxidative modification of bases in nucleic acids. Of these, two distinct families, namely the AlkB and the kinetoplastid base J binding proteins (JBP) catalyze in situ hydroxylation of bases in nucleic acids. Using sensitive computational analysis of sequences, structures and contextual information from genomic structure and protein domain architectures, we report five distinct families of 2-oxoglutarate- and iron(II)-dependent dioxygenase that we predict to be involved in nucleic acid modifications. Among the DNA-modifying families, we show that the dioxygenase domains of the kinetoplastid base J-binding proteins belong to a larger family that includes the Tet proteins, prototyped by the human oncogene Tet1, and proteins from basidiomycete fungi, chlorophyte algae, heterolobosean amoeboflagellates and bacteriophages. We present evidence that some of these proteins are likely to be involved in oxidative modification of the 5-methyl group of cytosine leading to the formation of 5-hydroxymethylcytosine. The Tet/JBP homologs from basidiomycete fungi such as Laccaria and Coprinopsis show large lineage-specific expansions and a tight linkage with genes encoding a novel and distinct family of predicted transposases, and a member of the Maelstrom-like HMG family. We propose that these fungal members are part of a mobile transposon. To the best of our knowledge, this is the first report of a eukaryotic transposable element that encodes its own DNA-modification enzyme with a potential regulatory role. Through a wider analysis of other poorly characterized DNA-modifying enzymes we also show that the phage Mu Mom-like proteins, which catalyze the N6-carbamoylmethylation of adenines, are also linked to diverse families of bacterial transposases, suggesting that DNA modification by transposable elements might have a more general presence than previously appreciated. Among the other families of 2-oxoglutarate- and iron(II)-dependent dioxygenases identified in this study, one which is found in algae, is predicted to mainly comprise of RNA-modifying enzymes and shows a striking diversity in protein domain architectures suggesting the presence of RNA modifications with possibly unique adaptive roles. The results presented here are likely to provide the means for future investigation of unexpected epigenetic modifications, such as hydroxymethyl cytosine, that could profoundly impact our understanding of gene regulation and processes such as DNA demethylation.
Nature Structural & Molecular Biology | 2008
K. Mark Ansel; William A. Pastor; Nicola Rath; Ariya D. Lapan; Elke Glasmacher; Christine Wolf; Laura C Smith; Nikoletta Papadopoulou; Edward D. Lamperti; Mamta Tahiliani; Joachim W. Ellwart; Yujiang Shi; Elisabeth Kremmer; Anjana Rao; Vigo Heissmeyer
Eri1 is a 3′-to-5′ exoribonuclease conserved from fission yeast to humans. Here we show that Eri1 associates with ribosomes and ribosomal RNA (rRNA). Ribosomes from Eri1–deficient mice contain 5.8S rRNA that is aberrantly extended at its 3′ end, and Eri1, but not a catalytically inactive mutant, converts this abnormal 5.8S rRNA to the wild-type form in vitro and in cells. In human and murine cells, Eri1 localizes to the cytoplasm and nucleus, with enrichment in the nucleolus, the site of preribosome biogenesis. RNA binding residues in the Eri1 SAP and linker domains promote stable association with rRNA and thereby facilitate 5.8S rRNA 3′ end processing. Taken together, our findings indicate that Eri1 catalyzes the final trimming step in 5.8S rRNA processing, functionally and spatially connecting this regulator of RNAi with the basal translation machinery.
Cell Reports | 2015
Cheng Li; Yahui Lan; Lianna Schwartz-Orbach; Evgenia Korol; Mamta Tahiliani; Todd Evans; Mary G. Goll
The Tet family of methylcytosine dioxygenases (Tet1, Tet2, and Tet3) convert 5-methylcytosine to 5-hydroxymethylcytosine. To date, functional overlap among Tet family members has not been examined systematically in the context of embryonic development. To clarify the potential for overlap among Tet enzymes during development, we mutated the zebrafish orthologs of Tet1, Tet2, and Tet3 and examined single-, double-, and triple-mutant genotypes. Here, we identify Tet2 and Tet3 as the major 5-methylcytosine dioxygenases in the zebrafish embryo and uncover a combined requirement for Tet2 and Tet3 in hematopoietic stem cell (HSC) emergence. We demonstrate that Notch signaling in the hemogenic endothelium is regulated by Tet2/3 prior to HSC emergence and show that restoring expression of the downstream gata2b/scl/runx1 transcriptional network can rescue HSCs in tet2/3 double mutant larvae. Our results reveal essential, overlapping functions for tet genes during embryonic development and uncover a requirement for 5hmC in regulating HSC production.
Cold Spring Harbor Perspectives in Biology | 2014
Skirmantas Kriaucionis; Mamta Tahiliani
Methylation of the base cytosine in DNA is critical for silencing endogenous retroviruses, regulating gene expression, and establishing cellular identity, and has long been regarded as an indelible epigenetic mark. The recent discovery that the ten eleven translocation (TET) proteins can oxidize 5-methylcytosine (5mC) resulting in the formation of 5-hydroxymethylcytosine (5hmC) and other oxidized cytosine variants in the genome has triggered a paradigm shift in our understanding of how dynamic changes in DNA methylation regulate transcription and cellular differentiation, thus influencing normal development and disease.