Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward G. Barrett is active.

Publication


Featured researches published by Edward G. Barrett.


The Journal of Neuroscience | 2008

A Two-Year Study with Fibrillar β-Amyloid (Aβ) Immunization in Aged Canines: Effects on Cognitive Function and Brain Aβ

Elizabeth Head; Viorela Pop; Vitaly Vasilevko; Mary Ann Hill; Tommy Saing; Floyd Sarsoza; Michaela Nistor; Lori-Ann Christie; Saskia Milton; Charles G. Glabe; Edward G. Barrett; David H. Cribbs

Aged canines (dogs) accumulate human-type β-amyloid (Aβ) in diffuse plaques in the brain with parallel declines in cognitive function. We hypothesized that reducing Aβ in a therapeutic treatment study of aged dogs with preexisting Aβ pathology and cognitive deficits would lead to cognitive improvements. To test this hypothesis, we immunized aged beagles (8.4–12.4 years) with fibrillar Aβ1–42 formulated with aluminum salt (Alum) for 2.4 years (25 vaccinations). Cognitive testing during this time revealed no improvement in measures of learning, spatial attention, or spatial memory. After extended treatment (22 vaccinations), we observed maintenance of prefrontal-dependent reversal learning ability. In the brain, levels of soluble and insoluble Aβ1–40 and Aβ1–42 and the extent of diffuse plaque accumulation was significantly decreased in several cortical regions, with preferential reductions in the prefrontal cortex, which is associated with a maintenance of cognition. However, the amount of soluble oligomers remained unchanged. The extent of prefrontal Aβ was correlated with frontal function and serum anti-Aβ antibody titers. Thus, reducing total Aβ may be of limited therapeutic benefit to recovery of cognitive decline in a higher mammalian model of human brain aging and disease. Immunizing animals before extensive Aβ deposition and cognitive decline to prevent oligomeric or fibrillar Aβ formation may have a greater impact on cognition and also more directly evaluate the role of Aβ on cognition in canines. Alternatively, clearing preexisting Aβ from the brain in a treatment study may be more efficacious for cognition if combined with a second intervention that restores neuron health.


Inhalation Toxicology | 2007

Health Effects of Inhaled Gasoline Engine Emissions

Jacob D. McDonald; Matthew D. Reed; Matthew J. Campen; Edward G. Barrett; JeanClare Seagrave; Joe L. Mauderly

Despite their prevalence in the environment, and the myriad studies that have shown associations between morbidity or mortality with proximity to roadways (proxy for motor vehicle exposures), relatively little is known about the toxicity of gasoline engine emissions (GEE). We review the studies conducted on GEE to date, and summarize the findings from each of these studies. While there have been several studies, most of the studies were conducted prior to 1980 and thus were not conducted with contemporary engines, fuels, and driving cycles. In addition, many of the biological assays conducted during those studies did not include many of the assays that are conducted on contemporary inhalation exposures to air pollutants, including cardiovascular responses and others. None of the exposures from these earlier studies were characterized at the level of detail that would be considered adequate today. A recent GEE study was conducted as part of the National Environmental Respiratory Center (www.nercenter.org). In this study several in-use mid-mileage General Motors (Chevrolet S-10) vehicles were purchased and utilized for inhalation exposures. An exposure protocol was developed where engines were operated with a repeating California Unified Driving Cycle with one cold start per day. Two separate engines were used to provide two cold starts over a 6-h inhalation period. The exposure atmospheres were characterized in detail, including detailed chemical and physical analysis of the gas, vapor, and particle phase. Multiple rodent biological models were studied, including general toxicity and inflammation (e.g., serum chemistry, lung lavage cell counts/differentials, cytokine/chemokine analysis, histopathology), asthma (adult and in utero exposures with pulmonary function and biochemical analysis), cardiovascular effects (biochemical and electrocardiograph changes in susceptible rodent models), and susceptibility to infection (Pseudomonas bacteria challenge). GEE resulted in significant biological effects for upregulation of MIP-2, clearance of Pseudomonas bacteria, development of allergic response after in utero exposure, and cardiovascular indicators of vasoconstriction, oxidant stress, and damage.


Inhalation Toxicology | 2006

Effects of Hardwood Smoke Exposure on Allergic Airway Inflammation in Mice

Edward G. Barrett; Roger D. Henson; Steven K. Seilkop; Jacob D. McDonald; Matthew D. Reed

Hardwood smoke (HWS) from wood burning stoves and fireplaces can be a significant contributor to the composition of ambient air pollution. We hypothesize that the inhalation of HWS by ovalbumin (OVA)-sensitized mice with preexisting lung inflammation leads to the exacerbation of allergic airway responses. Two different models were employed to characterize the effects of inhaled wood smoke on allergic airway inflammation. In both models, male BALB/c mice were sensitized by injection with OVA and alum. In one model, mice were challenged by inhalation with OVA 1 day prior to exposure to HWS (30, 100, 300, or 1000 μg particulate matter [PM]/m3) for 6 h/day on 3 consecutive days. In the other model, mice were exposed by inhalation to OVA, rested for 11 days, were exposed to HWS for 3 consecutive days, and then were exposed to OVA immediately after the final HWS exposure. Bronchoalveolar lavage (BAL), and blood collection were performed ∼ 18 h after the last HWS or OVA exposure. HWS exposure after the final allergen challenge (first model) led to a significant increase in BAL eosinophils only at the 300 μg/m3 level. In contrast, changes in BAL cells did not reach statistical significance in the second model. There were no HWS-induced changes in BAL interleukin (IL)-2, IL-4, IL-13, and interferon (IFN)γ levels in either model following OVA challenge. These results suggest that acute HWS exposure can minimally exacerbate some indices of allergic airway inflammation when a final OVA challenge precedes HWS exposure, but does not alter Th1/Th2 cytokine levels.


Journal of Alzheimer's Disease | 2010

Changes in cognition and amyloid-β processing with long term cholesterol reduction using atorvastatin in aged dogs

M. Paul Murphy; Jacqueline Morales; Tina L. Beckett; Giuseppe Astarita; Daniele Piomelli; Adam M. Weidner; Christa M. Studzinski; Amy L.S. Dowling; Xiaohong Wang; Harry LeVine; Richard J. Kryscio; Yushun Lin; Edward G. Barrett; Elizabeth Head

Human studies suggest either a protective role or no benefit of statins against the development of Alzheimers disease (AD). We tested the hypothesis that statin-mediated cholesterol reduction in aged dogs, which have cognitive impairments and amyloid-β (Aβ) pathology, would improve cognition and reduce neuropathology. In a study of 12 animals, we treated dogs with 80 mg/day of atorvastatin for 14.5 months. We did not observe improvements in discrimination learning; however, there were transient impairments in reversal learning, suggesting frontal dysfunction. Spatial memory function did not change with treatment. Peripheral levels of cholesterol, LDLs, triglycerides, and HDL were significantly reduced in treated dogs. Aβ in cerebrospinal fluid and brain remained unaffected. However, β-secretase-1 (BACE1) protein levels and activity decreased and correlated with reduced brain cholesterol. Finally, lipidomic analysis revealed a significant decrease in the ratio of omega-6 to omega-3 essential fatty in temporal cortex of treated aged dogs. Aged beagles are a unique model that may provide novel insights and translational data that can predict outcomes of statin use in human clinical trials. Treatment with atorvastatin may be beneficial for brain aging by reducing BACE1 protein and omega6:omega3 ratio, however, the potential adverse cognitive outcomes reported here should be more carefully explored given their relevance to human clinical outcomes.


Inhalation Toxicology | 2008

Health effects of subchronic inhalation exposure to gasoline engine exhaust

Matthew D. Reed; Edward G. Barrett; Matthew J. Campen; K. K. Divine; Andrew P. Gigliotti; Jacob D. McDonald; JeanClare Seagrave; Joe L. Mauderly; Steven K. Seilkop; J. A. Swenberg

Gasoline engine emissions are a ubiquitous source of exposure to complex mixtures of particulate matter (PM) and non-PM pollutants; yet their health hazards have received little study in comparison with those of diesel emissions. As a component of the National Environmental Respiratory Center (NERC) multipollutant research program, F344 and SHR rats and A/J, C57BL/6, and BALBc mice were exposed 6 h/day, 7 days/week for 1 week to 6 months to exhaust from 1996 General Motors 4.3-L engines burning national average fuel on a simulated urban operating cycle. Exposure groups included whole exhaust diluted 1:10, 1:15, or 1:90, filtered exhaust at the 1:10 dilution, or clean air controls. Evaluations included organ weight, histopathology, hematology, serum chemistry, bronchoalveolar lavage, cardiac electrophysiology, micronuclei in circulating cells, DNA methylation and oxidative injury, clearance of Pseudomonas aeruginosa from the lung, and development of respiratory allergic responses to ovalbumin. Among the 120 outcome variables, only 20 demonstrated significant exposure effects. Several statistically significant effects appeared isolated and were not supported by related variables. The most coherent and consistent effects were those related to increased red blood cells, interpreted as likely to have resulted from exposure to 13–107 ppm carbon monoxide. Other effects supported by multiple variables included mild lung irritation and depression of oxidant production by alveolar macrophages. The lowest exposure level caused no significant effects. Because only 6 of the 20 significant effects appeared to be substantially reversed by PM filtration, the majority of effects were apparently caused by non-PM components of exhaust.


Immunology | 2003

Parental allergic status influences the risk of developing allergic sensitization and an asthmatic‐like phenotype in canine offspring

Edward G. Barrett; Karin Rudolph; Larry E. Bowen; David E. Bice

Increasing evidence suggests that parental allergic status, especially that of the mother, may play a unique and important role in influencing the development of fetal infant immune responses to inhaled allergens, independently of genetic predisposition. We have developed an experimental model in dogs where the offspring from allergic parents, when exposed to inhaled allergen, develop allergic sensitization and an asthmatic phenotype, whereas the offspring from non‐allergic parents do not. Offspring from ragweed‐sensitized (two litters, n = 10) or non‐sensitized (two litters, n = 11) Beagle dogs were exposed repeatedly, by inhalation, to ragweed or filtered air (negative control) beginning within 1 week after birth. Serum levels of total immunoglobulin (Ig)E, and ragweed‐specific IgE and IgG, were measured at specific time‐points up to 40 weeks after birth. Cell differentials in the bronchoalveolar lavage were determined on days 1 and 4 following ragweed instillation into the offsprings lungs at 26 weeks of age. Changes in pulmonary resistance following challenge with histamine and ragweed (five breaths) were measured at 40 weeks after birth. Offspring from sensitized parents exposed to ragweed developed elevated serum total IgE and ragweed‐specific IgE and IgG, and showed an increased pulmonary resistance to histamine and ragweed, and increased numbers of eosinophils in bronchoalveolar lavage. In contrast, offspring from non‐sensitized parents did not exhibit this immune response. These results suggest that parental allergic sensitivity is important in the development of allergic sensitization and an asthmatic phenotype in the offspring.


Inhalation Toxicology | 2014

The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: II. Comparison of responses to diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions

Joe L. Mauderly; Edward G. Barrett; Kimberly C. Day; Andrew P. Gigliotti; Jacob D. McDonald; Kevin S. Harrod; Amie K. Lund; Matthew D. Reed; JeanClare Seagrave; Matthew J. Campen; Steven K. Seilkop

Abstract The NERC Program conducted identically designed exposure–response studies of the respiratory and cardiovascular responses of rodents exposed by inhalation for up to 6 months to diesel and gasoline exhausts (DE, GE), wood smoke (WS) and simulated downwind coal emissions (CE). Concentrations of the four combustion-derived mixtures ranged from near upper bound plausible to common occupational and environmental hotspot levels. An “exposure effect” statistic was created to compare the strengths of exposure–response relationships and adjustments were made to minimize false positives among the large number of comparisons. All four exposures caused statistically significant effects. No exposure caused overt illness, neutrophilic lung inflammation, increased circulating micronuclei or histopathology of major organs visible by light microscopy. DE and GE caused the greatest lung cytotoxicity. WS elicited the most responses in lung lavage fluid. All exposures reduced oxidant production by unstimulated alveolar macrophages, but only GE suppressed stimulated macrophages. Only DE retarded clearance of bacteria from the lung. DE before antigen challenge suppressed responses of allergic mice. CE tended to amplify allergic responses regardless of exposure order. GE and DE induced oxidant stress and pro-atherosclerotic responses in aorta; WS and CE had no such effects. No overall ranking of toxicity was plausible. The ranking of exposures by number of significant responses varied among the response models, with each of the four causing the most responses for at least one model. Each exposure could also be deemed most or least toxic depending on the exposure metric used for comparison. The database is available for additional analyses.


Inhalation Toxicology | 2003

Effect of Inhaled Ultrafine Carbon Particles on the Allergic Airway Response in Ragweed-Sensitized Dogs

Edward G. Barrett; Karin Rudolph; Larry E. Bowen; Bruce A. Muggenburg; David E. Bice

Episodic increases in air pollution have been associated with the exacerbation of asthma symptoms. Ultrafine particles are a component of air pollution and may be involved in causing the adverse health effects associated with high air pollution. We evaluated the effects of ultrafine particle inhalation on immune and airway responses in a beagle dog model of allergic asthma. Six allergic (ragweed sensitive) and six nonallergic dogs were exposed to ultrafine carbon particles (232.3 ± 2.5 µg/m 3, 35.2 ± 0.3 nm) for 1 h, followed by a challenge with vehicle (water) as a negative control. Airway resistance was measured during particle exposure and after vehicle challenge. Immune responses 3 days before and after (1 h and 1, 4, 7, and 11 days) particle exposure were assessed by measuring total immunoglobulin E (IgE) and ragweed-specific IgE and IgG in serum and bronchoalveolar lavage fluid (BALF), and cell differentials in BALF. Each dog was exposed a second time to ultrafine carbon particles (251.4 ± 5.3 µg/m 3, 34.9 ± 0.5 nm) for 1 h followed by a challenge with ragweed and the same measurements. Airway resistance did not change during particle exposure in any of the dogs, and ragweed-induced airway reactivity was not altered by particle exposure. Total and ragweed-specific serum IgE and total IgE in BALF were higher in allergic dogs at all time points. Particle exposure did not affect antibody levels in serum or BALF in allergic dogs. Nonallergic dogs developed specific IgG in response to multiple inhalation exposures to ragweed, but this was not associated with particle exposure. Neutrophils were elevated in BALF for all groups 1 day after particle exposure. In conclusion, despite the induction of low level inflammation in the lungs of allergic and nonallergic dogs, exposure to ultrafine carbon particles did not alter airway reactivity or immune responses.


Journal of Inflammation | 2013

Models of respiratory disease symposium

Kathy H Abbott-Banner; Anthony Holmes; Ian M. Adcock; Navin Rao; Edward G. Barrett; Richard G. Knowles

The symposium brought together representatives from the pharmaceutical industry and academia who are actively involved with establishing animal models and also in vitro translational assays of respiratory disease. It was the second of its kind, (the first one was held at the Glaxo SmithKline (GSK) Stevenage, UK site in April 2009) exchanging information on the difficult challenge of establishing predictive animal models of respiratory diseases. The organising group, which was led by Dr Kathy Abbott Banner and Prof. Richard Knowles, were originally drawn from the respiratory representatives of the European Federation of Pharmaceutical Industries and Associations (EFPIA) group of companies involved in a bid for EU funds to support work on severe asthma, but have spread the network to include many companies outside this group. The objectives of the symposium were to share knowledge in an open and collaborative atmosphere, and subsequently reach a consensus on best practice for animal models of respiratory disease. It is hoped that this will lead to decreased unnecessary duplication of animal studies, and thus a reduction in animal numbers. The symposium was held on September 6th and 7th 2012 at Novartis site in Horsham, UK. There were ~120 participants from 16 different pharmaceutical companies/contract research organisations and 10 academic institutions based in Europe, U.S.A and Australia. The NC3Rs and UBIOPRED were also represented. Key opinion leaders (Prof. Stephen Holgate, Prof. Dave Singh, Prof. Sebastian Johnston and Dr Paul Mercer) gave plenary lectures. In addition there were oral and poster presentations on COPD (P25-P31), asthma (P1-18, P40), exacerbations (P19-P24, P41), fibrosis (P38, P39) and pulmonary arterial hypertension (P37) and workshops on asthma, COPD and exacerbations. In addition there were posters on inhaled delivery systems (P35, P36). As the majority of the abstracts received were on asthma, COPD and exacerbations, this meeting summary will focus on the highlights from those. Several pharmaceutical companies provided sponsorship of the symposium.


Neurobiology of Disease | 2010

Linear and conformation specific antibodies in aged beagles after prolonged vaccination with aggregated Abeta

Vitaly Vasilevko; Viorela Pop; Hyun Jin Kim; Tommy Saing; Charles C. Glabe; Saskia Milton; Edward G. Barrett; Carl W. Cotman; David H. Cribbs; Elizabeth Head

Previously we showed that anti-Abeta peptide immunotherapy significantly attenuated Alzheimers-like amyloid deposition in the central nervous system of aged canines. In this report we have characterized the changes that occurred in the humoral immune response over 2.4years in canines immunized repeatedly with aggregated Abeta(1-42) (AN1792) formulated in alum adjuvant. We observed a rapid and robust induction of anti-Abeta antibody titers, which were associated with an anti-inflammatory T helper type 2 (Th2) response. The initial antibody response was against dominant linear epitope at the N-terminus region of the Abeta(1-42) peptide, which is identical to the one in humans and vervet monkeys. After multiple immunizations the antibody response drifted toward the elevation of antibodies that recognized conformational epitopes of assembled forms of Abeta and other types of amyloid. Our findings indicate that prolonged immunization results in distinctive temporal changes in antibody profiles, which may be important for other experimental and clinical settings.

Collaboration


Dive into the Edward G. Barrett's collaboration.

Top Co-Authors

Avatar

Karin Rudolph

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jacob D. McDonald

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Christopher Royer

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin S. Harrod

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Reed

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Chris Royer

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joe L. Mauderly

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Bice

Lovelace Respiratory Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge