Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin S. Harrod is active.

Publication


Featured researches published by Kevin S. Harrod.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1998

Clara cell secretory protein decreases lung inflammation after acute virus infection.

Kevin S. Harrod; Amber D. Mounday; Barry R. Stripp; Jeffrey A. Whitsett

Clara cell secretory protein (CCSP) is an abundant 10-kDa polypeptide synthesized and secreted primarily by nonciliated bronchiolar epithelial cells in the mammalian lung. To determine the potential role of CCSP in pulmonary inflammation after acute viral infection, CCSP gene-targeted (CCSP-deficient [CCSP(-/-)]) mice were exposed to a recombinant E1- and E3-deficient adenoviral vector, Av1Luc1, intratracheally. Lung inflammation was markedly increased in CCSP(-/-) mice compared with wild-type control mice and was associated with an increased number of polymorphonuclear cell infiltrates and epithelial cell injury in both conducting airways and alveolar regions. Histological evidence of pulmonary inflammation in CCSP(-/-) mice was associated with increased production of cytokine (interleukin-1beta and -6 and tumor necrosis factor-alpha) mRNA and protein, as well as chemokine (macrophage inflammatory protein-1alpha and -2 and monocyte chemoattractant protein-1) mRNA expression within the lung in response to adenoviral infection. Adenoviral-mediated gene transfer was decreased in CCSP(-/-) mice relative to wild-type mice as measured by luciferase enzyme activity in lung homogenates. The present study suggests that CCSP is involved in modulating lung inflammation during viral infection and supports a role for CCSP in lung host defense.Clara cell secretory protein (CCSP) is an abundant 10-kDa polypeptide synthesized and secreted primarily by nonciliated bronchiolar epithelial cells in the mammalian lung. To determine the potential role of CCSP in pulmonary inflammation after acute viral infection, CCSP gene-targeted {CCSP-deficient [CCSP(-/-)]} mice were exposed to a recombinant E1- and E3-deficient adenoviral vector, Av1Luc1, intratracheally. Lung inflammation was markedly increased in CCSP(-/-) mice compared with wild-type control mice and was associated with an increased number of polymorphonuclear cell infiltrates and epithelial cell injury in both conducting airways and alveolar regions. Histological evidence of pulmonary inflammation in CCSP(-/-) mice was associated with increased production of cytokine (interleukin-1β and -6 and tumor necrosis factor-α) mRNA and protein, as well as chemokine (macrophage inflammatory protein-1α and -2 and monocyte chemoattractant protein-1) mRNA expression within the lung in response to adenoviral infection. Adenoviral-mediated gene transfer was decreased in CCSP(-/-) mice relative to wild-type mice as measured by luciferase enzyme activity in lung homogenates. The present study suggests that CCSP is involved in modulating lung inflammation during viral infection and supports a role for CCSP in lung host defense.


Journal of Virology | 2004

Human Metapneumovirus Persists in BALB/c Mice despite the Presence of Neutralizing Antibodies

Rene Alvarez; Kevin S. Harrod; Wun-Ju Shieh; Sherif R. Zaki; Ralph A. Tripp

ABSTRACT Human metapneumovirus (HMPV) has emerged as an important human respiratory pathogen causing upper and lower respiratory tract infections in young children and older adults. Recent epidemiological evidence indicates that HMPV may cocirculate with respiratory syncytial virus, and HMPV infection has been associated with other respiratory diseases. In this study, we show that BALB/c mice are susceptible to HMPV infection, the virus replicates in the lungs with biphasic growth kinetics in which peak titers occur at days 7 and 14 postinfection (p.i.), and infectious HMPV can be recovered from lungs up to day 60 p.i. In addition, we show that genomic HMPV RNA can be detected in the lungs for ≥180 days p.i. by reverse transcription-PCR; however, neither HMPV RNA nor infectious virus can be detected in serum, spleen, kidneys, heart, trachea, and brain tissue. Lung histopathology revealed prevalent mononuclear cell infiltration in the interstitium beginning at day 2 p.i. and peaking at day 4 p.i. which decreased by day 14 p.i. and was associated with airway remodeling. Increased mucus production evident at day 2 p.i. was concordant with increased bronchial and bronchiolar inflammation. HMPV-specific antibodies were detected by day 14 p.i., neutralizing antibody titers reached ≥6.46 log2 end-point titers by day 28 p.i., and depletion of T cells or NK cells resulted in increased HMPV titers in the lungs, suggesting some immune control of viral persistence. This study shows that BALB/c mice are amenable for HMPV studies and indicates that HMPV persists as infectious virus in the lungs of normal mice for several weeks postinfection.


Journal of Immunology | 2003

Clara Cell Secretory Protein Modulates Lung Inflammatory and Immune Responses to Respiratory Syncytial Virus Infection

Shan Ze Wang; Cynthia L. Rosenberger; Yi Xiao Bao; James M. Stark; Kevin S. Harrod

Clara cell secretory protein (CCSP) has been shown to have anti-inflammatory and immunomodulatory functions in the lung. Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and young children. RSV usually infects small airways and likely interacts with the Clara cells of bronchioles. To determine a possible role for CCSP during acute RSV infection, CCSP-deficient (CCSP−/−) and wild-type (WT) mice were intratracheally infected with RSV and the lung inflammatory and immune responses to RSV infection were assessed. RSV-F gene expression was increased in the lungs of CCSP−/− mice as compared with WT mice following RSV infection, consistent with increased viral persistence. Lung inflammation was significantly increased in CCSP−/− mice as compared with WT mice after infection. Moreover, although the levels of Th1 cytokines were similar, the levels of Th2 cytokines and neutrophil chemokines were increased in the lungs of CCSP−/− mice following infection. Physiologic endpoints of exacerbated lung disease, specifically airway reactivity and mucus production, were increased in CCSP−/− mice after RSV infection. Importantly, restoration of CCSP in the airways of CCSP−/− mice abrogated the increased viral persistence, lung inflammation, and airway reactivity. These findings suggest a role for CCSP and Clara cells in regulating lung inflammatory and immune responses to RSV infection.


Environmental Health Perspectives | 2004

Effects of low sulfur fuel and a catalyzed particle trap on the composition and toxicity of diesel emissions.

Jacob D. McDonald; Kevin S. Harrod; JeanClare Seagrave; Steven K. Seilkop; Joe L. Mauderly

In this study we compared a “baseline” condition of uncontrolled diesel engine exhaust (DEE) emissions generated with current (circa 2003) certification fuel to an emissions-reduction (ER) case with low sulfur fuel and a catalyzed particle trap. Lung toxicity assessments (resistance to respiratory viral infection, lung inflammation, and oxidative stress) were performed on mice (C57Bl/6) exposed by inhalation (6 hr/day for 7 days). The engine was operated identically (same engine load) in both cases, and the inhalation exposures were conducted at the same exhaust dilution rate. For baseline DEE, this dilution resulted in a particle mass (PM) concentration of approximately 200 μg/m3 PM, whereas the ER reduced the PM and almost every other measured constituent [except nitrogen oxides (NOx)] to near background levels in the exposure atmospheres. These measurements included PM, PM size distribution, PM composition (carbon, ions, elements), NOx, carbon monoxide, speciated/total volatile hydrocarbons, and several classes of semi-volatile organic compounds. After exposure concluded, one group of mice was immediately sacrificed and assessed for inflammation and oxidative stress in lung homogenate. Another group of mice were intratracheally instilled with respiratory syncytial virus (RSV), and RSV lung clearance and inflammation was assessed 4 days later. Baseline DEE produced statistically significant biological effects for all measured parameters. The use of low sulfur fuel and a catalyzed trap either completely or nearly eliminated the effects.


Journal of Immunology | 2012

Impaired NLRP3 Inflammasome Function in Elderly Mice during Influenza Infection Is Rescued by Treatment with Nigericin

Heather W. Stout-Delgado; Sarah E. Vaughan; Anushree C. Shirali; Richard J. Jaramillo; Kevin S. Harrod

The NLRP3 inflammasome is activated in the lung during influenza viral infection; however, the impact of aging on inflammasome function during influenza infection has not been examined. In this study, we show that elderly mice infected with a mouse-adapted strain of influenza produced lower levels of IL-1β during in vitro and in vivo infection. Dendritic cells from elderly mice exhibited decreased expression of ASC, NLRP3, and capase-1 but increased expression of pro–IL-1β, pro–IL-18, and pro–IL-33 compared with dendritic cells from young infected mice. Treatment with nigericin during influenza infection augmented IL-1β production, increased caspase-1 activity, and decreased morbidity and mortality in elderly mice. Our study demonstrates for the first time, to our knowledge, that during influenza viral infection, elderly mice have impaired NLRP3 inflammasome activity and that treatment with nigericin rescues NLRP3 activation in elderly hosts.


Vaccine | 2011

Delta Inulin Polysaccharide Adjuvant Enhances The Ability Of Split-virion H5N1 Vaccine To Protect Against Lethal Challenge In Ferrets

R. Colby Layton; Nikolai Petrovsky; Andrew P. Gigliotti; Zemmie Pollock; Jennifer Knight; Nathaniel Donart; John Pyles; Kevin S. Harrod; Peng Gao; Frederick Koster

BACKGROUND The reduced immunogenicity of the H5 hemagglutinin (HA), compared to seasonal HA serotypes, has stimulated searches for effective adjuvants to improve H5 vaccine efficacy. This study examined the immunogenicity and protective efficacy in ferrets immunized with a split-virion H5N1 vaccine combined with Advax™, a novel delta inulin-based polysaccharide adjuvant technology that has previously demonstrated ability to augment humoral and cellular immunity to co-administered antigens. METHODS Ferrets were vaccinated twice 21 days apart with 7.5 μg or 22.5 μg of a split-virion preparation of A/Vietnam/1203/2004 with or without adjuvant. An additional group received just one immunization with 22.5 μg HA plus adjuvant. Serum antibodies were measured by hemagglutination inhibition and microneutralization assays. Vaccinated animals were challenged intranasally 21 days after the last immunization with 10(6) EID(50) of the homologous strain. Morbidity was assessed by observed behavior, weight loss, temperature, cytopenias, histopathology, and viral load. RESULTS No serum neutralization antibody was detected after two immunizations with unadjuvanted vaccine. Two immunizations with high or low dose adjuvanted vaccine stimulated high neutralizing antibody titers. Survival was 100% in all groups receiving adjuvanted-vaccine including the single dose group, compared to 67% survival with unadjuvanted vaccine, and 0% survival in saline or adjuvant-alone controls. Minimal morbidity was seen in all animals receiving adjuvanted vaccine, and was limited to rhinorrhea and mild thrombocytopenia, without fever, weight loss, or reduced activity. H5N1 virus was cleared from the nasal wash by day 4 post-challenge only in animals receiving adjuvanted vaccine which also prevented viral invasion of the brain in most animals. CONCLUSIONS In this initial study, Advax™ adjuvant formulations improved the protective efficacy of a split-virion H5N1 vaccine as measured by significantly enhanced immunogenicity, survival, and reduced morbidity.


Journal of Virology | 2011

Higher Level of Replication Efficiency of 2009 (H1N1) Pandemic Influenza Virus than Those of Seasonal and Avian Strains: Kinetics from Epithelial Cell Culture and Computational Modeling

Hugh Mitchell; Drew Levin; Stephanie Forrest; Catherine A. A. Beauchemin; Jennifer L. Tipper; Jennifer Knight; Nathaniel Donart; R. Colby Layton; John Pyles; Peng Gao; Kevin S. Harrod; Alan S. Perelson; Frederick Koster

ABSTRACT The pathogenicity and transmission of influenza A viruses are likely determined in part by replication efficiency in human cells, which is the net effect of complex virus-host interactions. H5N1 avian, H1N1 seasonal, and H1N1 2009 pandemic influenza virus strains were compared by infecting human differentiated bronchial epithelial cells in air-liquid interface cultures at relatively low virus particle/cell ratios. Differential equation and computational models were used to characterize the in vitro kinetic behaviors of the three strains. The models were calibrated by fitting experimental data in order to estimate difficult-to-measure parameters. Both models found marked differences in the relative values of p, the virion production rate per cell, and R 0, an index of the spread of infection through the monolayer, with the values for the strains in the following rank order (from greatest to least): pandemic strain, followed by seasonal strain, followed by avian strain, as expected. In the differential equation model, which treats virus and cell populations as well mixed, R 0 and p varied proportionately for all 3 strains, consistent with a primary role for productivity. In the spatially explicit computational model, R 0 and p also varied proportionately except that R 0 derived for the pandemic strain was reduced, consistent with constrained viral spread imposed by multiple host defenses, including mucus and paracrine antiviral effects. This synergistic experimental-computational strategy provides relevant parameters for identifying and phenotyping potential pandemic strains.


Environmental Health Perspectives | 2011

Engine-operating load influences diesel exhaust composition and cardiopulmonary and immune responses.

Jacob D. McDonald; Matthew J. Campen; Kevin S. Harrod; JeanClare Seagrave; Steven K. Seilkop; Joe L. Mauderly

Background: The composition of diesel engine exhaust (DEE) varies by engine type and condition, fuel, engine operation, and exhaust after treatment such as particle traps. DEE has been shown to increase inflammation, susceptibility to infection, and cardiovascular responses in experimentally exposed rodents and humans. Engines used in these studies have been operated at idle, at different steady-state loads, or on variable-load cycles, but exposures are often reported only as the mass concentration of particulate matter (PM), and the effects of different engine loads and the resulting differences in DEE composition are unknown. Objectives: We assessed the impacts of load-related differences in DEE composition on models of inflammation, susceptibility to infection, and cardiovascular toxicity. Methods: We assessed inflammation and susceptibility to viral infection in C57BL/6 mice and cardiovascular toxicity in APOE–/– mice after being exposed to DEE generated from a single-cylinder diesel generator operated at partial or full load. Results: At the same PM mass concentration, partial load resulted in higher proportions of particle organic carbon content and a smaller particle size than did high load. Vapor-phase hydrocarbon content was greater at partial load. Compared with high-load DEE, partial-load DEE caused greater responses in heart rate and T-wave morphology, in terms of both magnitude and rapidity of onset of effects, consistent with previous findings that systemic effects may be driven largely by the gas phase of the exposure atmospheres. However, high-load DEE caused more lung inflammation and greater susceptibility to viral infection than did partial load. Conclusions: Differences in engine load, as well as other operating variables, are important determinants of the type and magnitude of responses to inhaled DEE. PM mass concentration alone is not a sufficient basis for comparing or combining results from studies using DEE generated under different conditions.


Inhalation Toxicology | 2006

Health Effects of Subchronic Exposure to Environmental Levels of Hardwood Smoke

Matthew D. Reed; Matthew J. Campen; Andrew P. Gigliotti; Kevin S. Harrod; Jacob D. McDonald; JeanClare Seagrave; Joe L. Mauderly; Steven K. Seilkop

Hardwood smoke is a contributor to both ambient and indoor air pollution. As part of a general health assessment of multiple anthropogenic source emissions conducted by the National Environmental Respiratory Center, a series of health assays was conducted on rodents exposed to environmentally relevant levels of hardwood smoke. This article summarizes the study design and exposures, and reports findings on general indicators of toxicity, bacterial clearance, cardiac function, and carcinogenic potential. Hardwood smoke was generated from an uncertified wood stove, burning wood of mixed oak species. Animals were exposed to clean air (control) or dilutions of whole emissions based on particulate (30, 100, 300, and 1000 μm g/m3). F344 rats, SHR rats, strain A/J mice, and C57BL/6 mice were exposed by whole-body inhalation 6 h/day, 7 days/wk, for either 1 wk or 6 mo. Effects of exposure on general indicators of toxicity, bacterial clearance, cardiac function, and carcinogenic potential were mild. Exposure-related effects included increases in platelets and decreases in blood urea nitrogen and serum alanine aminotransferase. Several other responses met screening criteria for significant exposure effects but were not consistent between genders or exposure times and were not corroborated by related parameters. Pulmonary histopathology revealed very little accumulation of hardwood smoke particulate matter. Parallel studies demonstrated mild exposure effects on bronchoalveolar lavage parameters and in a mouse model of asthma. In summary, the results reported here show few and only modest health hazards from short-term to subchronic exposures to realistic concentrations of hardwood smoke.


FEBS Letters | 2011

Enhanced acetylation of alpha-tubulin in influenza A virus infected epithelial cells

Matloob Husain; Kevin S. Harrod

Acetylated microtubules (AcMTs), a post‐translationally modified form of microtubules, promote polarized protein transport. Here we report that influenza A virus (IAV) induces the acetylation of microtubules in epithelial cells. By employing specific inhibitors and siRNA we demonstrate Rho GTPase‐mediated downregulation of tubulin deacetylase activity in IAV‐infected cells, resulting in increased tubulin acetylation. Further, we demonstrate that depolymerization/deacetylation or enhanced acetylation of microtubules decreased or increased, respectively, the release of virions from infected cells. IAV assembly requires the polarized delivery of viral components to apical plasma membrane. Our findings suggest the potential involvement of AcMTs in polarized trafficking of IAV components.

Collaboration


Dive into the Kevin S. Harrod's collaboration.

Top Co-Authors

Avatar

Richard J. Jaramillo

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Frederick Koster

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Gigliotti

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Tipper

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Albert P. Senft

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Edward G. Barrett

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jennifer Knight

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Peng Gao

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Zemmie Pollock

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dana Mitzel

Lovelace Respiratory Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge