Edward J. Hsieh
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward J. Hsieh.
Aging Cell | 2014
Dao Fu Dai; Pabalu P. Karunadharma; Ying Ann Chiao; Nathan Basisty; David A. Crispin; Edward J. Hsieh; Tony Chen; Haiwei Gu; Danijel Djukovic; Daniel Raftery; Richard P. Beyer; Michael J. MacCoss; Peter S. Rabinovitch
Chronic caloric restriction (CR) and rapamycin inhibit the mechanistic target of rapamycin (mTOR) signaling, thereby regulating metabolism and suppressing protein synthesis. Caloric restriction or rapamycin extends murine lifespan and ameliorates many aging‐associated disorders; however, the beneficial effects of shorter treatment on cardiac aging are not as well understood. Using a recently developed deuterated‐leucine labeling method, we investigated the effect of short‐term (10 weeks) CR or rapamycin on the proteomics turnover and remodeling of the aging mouse heart. Functionally, we observed that short‐term CR and rapamycin both reversed the pre‐existing age‐dependent cardiac hypertrophy and diastolic dysfunction. There was no significant change in the cardiac global proteome (823 proteins) turnover with age, with a median half‐life 9.1 days in the 5‐month‐old hearts and 8.8 days in the 27‐month‐old hearts. However, proteome half‐lives of old hearts significantly increased after short‐term CR (30%) or rapamycin (12%). This was accompanied by attenuation of age‐dependent protein oxidative damage and ubiquitination. Quantitative proteomics and pathway analysis revealed an age‐dependent decreased abundance of proteins involved in mitochondrial function, electron transport chain, citric acid cycle, and fatty acid metabolism as well as increased abundance of proteins involved in glycolysis and oxidative stress response. This age‐dependent cardiac proteome remodeling was significantly reversed by short‐term CR or rapamycin, demonstrating a concordance with the beneficial effect on cardiac physiology. The metabolic shift induced by rapamycin was confirmed by metabolomic analysis.
Cardiovascular Research | 2012
Dao Fu Dai; Edward J. Hsieh; Yonggang Liu; Tony Chen; Richard P. Beyer; Michael T. Chin; Michael J. MacCoss; Peter S. Rabinovitch
AIMS We investigate the role of mitochondrial oxidative stress in mitochondrial proteome remodelling using mouse models of heart failure induced by pressure overload. METHODS AND RESULTS We demonstrate that mice overexpressing catalase targeted to mitochondria (mCAT) attenuate pressure overload-induced heart failure. An improved method of label-free unbiased analysis of the mitochondrial proteome was applied to the mouse model of heart failure induced by transverse aortic constriction (TAC). A total of 425 mitochondrial proteins were compared between wild-type and mCAT mice receiving TAC or sham surgery. The changes in the mitochondrial proteome in heart failure included decreased abundance of proteins involved in fatty acid metabolism, an increased abundance of proteins in glycolysis, apoptosis, mitochondrial unfolded protein response and proteolysis, transcription and translational control, and developmental processes as well as responses to stimuli. Overexpression of mCAT better preserved proteins involved in fatty acid metabolism and attenuated the increases in apoptotic and proteolytic enzymes. Interestingly, gene ontology analysis also showed that monosaccharide metabolic processes and protein folding/proteolysis were only overrepresented in mCAT but not in wild-type mice in response to TAC. CONCLUSION This is the first study to demonstrate that scavenging mitochondrial reactive oxygen species (ROS) by mCAT not only attenuates most of the mitochondrial proteome changes in heart failure, but also induces a subset of unique alterations. These changes represent processes that are adaptive to the increased work and metabolic requirements of pressure overload, but which are normally inhibited by overproduction of mitochondrial ROS.
Journal of Proteome Research | 2010
Edward J. Hsieh; Michael R. Hoopmann; Brendan MacLean; Michael J. MacCoss
In shotgun proteomics, the analysis of tandem mass spectrometry data from peptides can benefit greatly from high mass accuracy measurements. In this study, we have evaluated two database search strategies which use high mass accuracy measurements of the peptide precursor ion. Our results indicate that peptide identifications are improved when spectra are searched with a wide mass tolerance window and precursor mass is used as a filter to discard incorrect matches. Database searches with a peptide data set constrained to peptides within a narrow mass window resulted in fewer peptide identifications but a significantly faster database search time.
Aging Cell | 2013
Jennifer Schleit; Simon C. Johnson; Christopher F. Bennett; Marissa Simko; Natalie Trongtham; Anthony Castanza; Edward J. Hsieh; Brian M. Wasko; Joe R. Delaney; George L. Sutphin; Daniel B. Carr; Christopher J. Murakami; Autumn Tocchi; Bo Xian; Weiyang Chen; Tao Yu; Sarani Goswami; Sean Higgins; Mollie Holmberg; Ki-Soo Jeong; Jin R. Kim; Shannon Klum; Eric Liao; Michael S. Lin; Winston Lo; Hillary Miller; Brady Olsen; Zhao J. Peng; Tom Pollard; Prarthana Pradeep
Dietary restriction (DR) increases lifespan and attenuates age‐related phenotypes in many organisms; however, the effect of DR on longevity of individuals in genetically heterogeneous populations is not well characterized. Here, we describe a large‐scale effort to define molecular mechanisms that underlie genotype‐specific responses to DR. The effect of DR on lifespan was determined for 166 single gene deletion strains in Saccharomyces cerevisiae. Resulting changes in mean lifespan ranged from a reduction of 79% to an increase of 103%. Vacuolar pH homeostasis, superoxide dismutase activity, and mitochondrial proteostasis were found to be strong determinants of the response to DR. Proteomic analysis of cells deficient in prohibitins revealed induction of a mitochondrial unfolded protein response (mtUPR), which has not previously been described in yeast. Mitochondrial proteotoxic stress in prohibitin mutants was suppressed by DR via reduced cytoplasmic mRNA translation. A similar relationship between prohibitins, the mtUPR, and longevity was also observed in Caenorhabditis elegans. These observations define conserved molecular processes that underlie genotype‐dependent effects of DR that may be important modulators of DR in higher organisms.
Circulation-heart Failure | 2013
Dao Fu Dai; Edward J. Hsieh; Tony Chen; Lorena Menendez; Nathan Basisty; Lauren Tsai; Richard P. Beyer; David A. Crispin; Nicholas J. Shulman; Hazel H. Szeto; Rong Tian; Michael J. MacCoss; Peter S. Rabinovitch
Background—We investigated the protective effects of mitochondrial-targeted antioxidant and protective peptides, Szeto-Schiller (SS) 31 and SS20, on cardiac function, proteomic remodeling, and signaling pathways. Methods and Results—We applied an improved label-free shotgun proteomics approach to evaluate the global proteomics changes in transverse aortic constriction (TAC)–induced heart failure and the associated signaling pathway changes using ingenuity pathway analysis. We found that 538 proteins significantly changed after TAC, which mapped to 53 pathways. The top pathways were in the categories of actin cytoskeleton, mitochondrial function, intermediate metabolism, glycolysis/gluconeogenesis, and citrate cycle. Concomitant treatment with SS31 ameliorated the congestive heart failure phenotypes and mitochondrial damage induced by TAC, in parallel with global attenuation of mitochondrial proteome changes, with an average of 84% protection of mitochondrial and 69% of nonmitochondrial protein changes. This included significant amelioration of all the ingenuity pathway analysis noted above. SS20 had only modest effects on heart failure and this tracked with only partial attenuation of global proteomics changes; furthermore, actin cytoskeleton pathways were significantly protected in SS20, whereas mitochondrial and metabolic pathways essentially were not. Conclusions—This study elucidates the signaling pathways significantly changed in pressure-overload–induced heart failure. The global attenuation of TAC-induced proteomic alterations by the mitochondrial-targeted peptide SS31 suggests that perturbed mitochondrial function may be an upstream signal to many of the pathway alterations in TAC and supports the potential clinical application of mitochondrial-targeted peptide drugs for the treatment heart failure.
Molecular & Cellular Proteomics | 2012
Edward J. Hsieh; Nicholas J. Shulman; Dao Fu Dai; Evelyn S. Vincow; Pabalu P. Karunadharma; Leo J. Pallanck; Peter S. Rabinovitch; Michael J. MacCoss
Defects in protein turnover have been implicated in a broad range of diseases, but current proteomics methods of measuring protein turnover are limited by the software tools available. Conventional methods require indirect approaches to differentiate newly synthesized protein when synthesized from partially labeled precursor pools. To address this, we have developed Topograph, a software platform which calculates the fraction of peptides that are from newly synthesized proteins and their turnover rates. A unique feature of Topograph is the ability to calculate amino acid precursor pool enrichment levels which allows for accurate calculations when the precursor pool is not fully labeled, and the approach used by Topograph is applicable regardless of the stable isotope label used. We validate the Topograph algorithms using data acquired from a mouse labeling experiment and demonstrate the influence that precursor pool corrections can have on protein turnover measurements.
Journal of the American Society for Mass Spectrometry | 2013
Edward J. Hsieh; Michael S. Bereman; Stanley Durand; Gary A. Valaskovic; Michael J. MacCoss
AbstractReversed-phase liquid chromatography is the most commonly used separation method for shotgun proteomics. Nanoflow chromatography has emerged as the preferred chromatography method for its increased sensitivity and separation. Despite its common use, there are a wide range of parameters and conditions used across research groups. These parameters have an effect on the quality of the chromatographic separation, which is critical to maximizing the number of peptide identifications and minimizing ion suppression. Here we examined the relationship between column lengths, gradient lengths, peptide identifications, and peptide peak capacity. We found that while longer column and gradient lengths generally increase peptide identifications, the degree of improvement is dependent on both parameters and is diminished at longer column and gradients. Peak capacity, in comparison, showed a more linear increase with column and gradient lengths. We discuss the discrepancy between these two results and some of the considerations that should be taken into account when deciding on the chromatographic conditions for a proteomics experiment. FigureThe effects of column and gradient lengths on the performance of nanoflow LC-MS/MS is examined in complex proteomic samples.
Aging Cell | 2015
Pabalu P. Karunadharma; Nathan Basisty; Dao Fu Dai; Ying A. Chiao; Ellen K. Quarles; Edward J. Hsieh; David A. Crispin; Jason H. Bielas; Nolan G. Ericson; Richard P. Beyer; Vivian L. MacKay; Michael J. MacCoss; Peter S. Rabinovitch
Calorie restriction (CR) and rapamycin (RP) extend lifespan and improve health across model organisms. Both treatments inhibit mammalian target of rapamycin (mTOR) signaling, a conserved longevity pathway and a key regulator of protein homeostasis, yet their effects on proteome homeostasis are relatively unknown. To comprehensively study the effects of aging, CR, and RP on protein homeostasis, we performed the first simultaneous measurement of mRNA translation, protein turnover, and abundance in livers of young (3 month) and old (25 month) mice subjected to 10‐week RP or 40% CR. Protein abundance and turnover were measured in vivo using 2H3–leucine heavy isotope labeling followed by LC‐MS/MS, and translation was assessed by polysome profiling. We observed 35–60% increased protein half‐lives after CR and 15% increased half‐lives after RP compared to age‐matched controls. Surprisingly, the effects of RP and CR on protein turnover and abundance differed greatly between canonical pathways, with opposite effects in mitochondrial (mt) dysfunction and eIF2 signaling pathways. CR most closely recapitulated the young phenotype in the top pathways. Polysome profiles indicated that CR reduced polysome loading while RP increased polysome loading in young and old mice, suggesting distinct mechanisms of reduced protein synthesis. CR and RP both attenuated protein oxidative damage. Our findings collectively suggest that CR and RP extend lifespan in part through the reduction of protein synthetic burden and damage and a concomitant increase in protein quality. However, these results challenge the notion that RP is a faithful CR mimetic and highlight mechanistic differences between the two interventions.
PLOS ONE | 2014
Judit Marsillach; Stephanie M. Suzuki; Rebecca J. Richter; Matthew G. McDonald; Peter M. Rademacher; Michael J. MacCoss; Edward J. Hsieh; Allan E. Rettie; Clement E. Furlong
Homocysteinylation of lysine residues by homocysteine thiolactone (HCTL), a reactive homocysteine metabolite, results in protein aggregation and malfunction, and is a well-known risk factor for cardiovascular, autoimmune and neurological diseases. Human plasma paraoxonase-1 (PON1) and bleomycin hydrolase (Blmh) have been reported as the physiological HCTL detoxifying enzymes. However, the catalytic efficiency of HCTL hydrolysis by Blmh is low and not saturated at 20 mM HCTL. The catalytic efficiency of PON1 for HCTL hydrolysis is 100-fold lower than that of Blmh. A homocysteine thiolactonase (HCTLase) was purified from human liver and identified by mass spectrometry (MS) as the previously described human biphenyl hydrolase-like protein (BPHL). To further characterize this newly described HCTLase activity, BPHL was expressed in Escherichia coli and purified. The sequence of the recombinant BPHL (rBPHL) and hydrolytic products of the substrates HCTL and valacyclovir were verified by MS. We found that the catalytic efficiency (kcat/Km) of rBPHL for HCTL hydrolysis was 7.7 × 104 M−1s−1, orders of magnitude higher than that of PON1 or Blmh, indicating a more significant physiological role for BPHL in detoxifying HCTL.
Chemico-Biological Interactions | 2013
Judit Marsillach; Edward J. Hsieh; Rebecca J. Richter; Michael J. MacCoss; Clement E. Furlong
Organophosphorus (OP) compounds include a broad group of toxic chemicals such as insecticides, chemical warfare agents and antiwear agents. The liver cytochromes P450 bioactivate many OPs to potent inhibitors of serine hydrolases. Cholinesterases were the first OP targets discovered and are the most studied. They are used to monitor human exposures to OP compounds. However, the assay that is currently used has limitations. The mechanism of action of OP compounds is the inhibition of serine hydrolases by covalently modifying their active-site serine. After structural rearrangement, the complex OP inhibitor-enzyme is irreversible and will remain in circulation until the modified enzyme is degraded. Mass spectrometry is a sensitive technology for analyzing protein modifications, such as OP-adducted enzymes. These analyses also provide some information about the nature of the OP adduct. Our aim is to develop high-throughput protocols for monitoring OP exposures using mass spectrometry.