Edward K. Vizy
University of Texas at Austin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward K. Vizy.
Journal of Climate | 2006
Kerry H. Cook; Edward K. Vizy
Abstract The ability of coupled GCMs to correctly simulate the climatology and a prominent mode of variability of the West African monsoon is evaluated, and the results are used to make informed decisions about which models may be producing more reliable projections of future climate in this region. The integrations were made available by the Program for Climate Model Diagnosis and Intercomparison for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The evaluation emphasizes the circulation characteristics that support the precipitation climatology, and the physical processes of a “rainfall dipole” variability mode that is often associated with dry conditions in the Sahel when SSTs in the Gulf of Guinea are anomalously warm. Based on the quality of their twentieth-century simulations over West Africa in summer, three GCMs are chosen for analysis of the twenty-first century integrations under various assumptions about future greenhouse gas increases. Each of these models behav...
Journal of Climate | 2001
Edward K. Vizy; Kerry H. Cook
Abstract The sensitivity of precipitation over West Africa to sea surface temperature anomalies (SSTAs) in the Gulf of Guinea and the eastern North Atlantic is studied using a GCM. Results from nine perpetual July simulations with various imposed SSTAs are presented and analyzed to reveal associations between the precipitation and SST fields via large-scale circulation and atmospheric moisture anomalies. Rainfall increases over the Guinean Coast and decreases over the Congo basin when warm SSTAs are present in the Gulf of Guinea. These precipitation perturbations are related to the forcing of a Kelvin and a Rossby wave. The former is associated with a weakening of the Walker circulation, while the latter strengthens the West African monsoon. Rainfall over West Africa is less sensitive to cold SSTAs than to warm anomalies. Three contributing factors are identified as follows: 1) latitude of the SST forcing, 2) background flow, and 3) nonlinearity of the Clausius–Clapeyron equation (no more than a 20% effec...
Journal of Climate | 2008
Kerry H. Cook; Edward K. Vizy
Abstract A regional atmospheric model with 60-km resolution is asynchronously coupled with a potential vegetation model to study the implications of twenty-first-century climate change for the tropical and subtropical climate and vegetation of South America. The coupled model produces an accurate simulation of the present day climate and vegetation. Future climate is simulated by increasing atmospheric CO2 levels to 757 ppmv and imposing lateral and surface boundary conditions derived from a GCM simulation for 2081–2100 from the Canadian Climate Center GCM. The coupled regional model simulation projects a 70% reduction in the extent of the Amazon rain forest by the end of the twenty-first century and a large eastward expansion of the caatinga vegetation that is prominent in the Nordeste region of Brazil today. These changes in vegetation are related to reductions in annual mean rainfall and a modification of the seasonal cycle that are associated with a weakening of tropical circulation systems.
Journal of Climate | 2008
Kerry H. Cook; Edward K. Vizy; Zachary S. Launer; Christina M. Patricola
Abstract Simulations from 18 coupled atmosphere–ocean GCMs are analyzed to predict changes in the climatological Great Plains low-level jet (GPLLJ) and Midwest U.S. hydrology resulting from greenhouse gas increases during the twenty-first century. To build confidence in the prediction, models are selected for analysis based on their twentieth-century simulations, and their simulations of the future are diagnosed to ensure that the response is reasonable. Confidence in the model projections is also bolstered by agreement among models, in a so-called multimodel ensemble, and by analogy with present-day interannual variability. The GCMs agree that the GPLLJ will be more intense in April, May, and June in the future. The selected models even agree on the reason for this intensification, namely, a westward extension and strengthening of the North Atlantic subtropical high (the Bermuda high) that occurs when greenhouse gas–induced warming over the continental United States exceeds that of the subtropical Atlant...
Journal of Climate | 2010
Kerry H. Cook; Edward K. Vizy
Abstract The easterly Caribbean low-level jet (CLLJ) is a prominent climate feature over the Intra-America Seas, and it is associated with much of the water vapor transport from the tropical Atlantic into the Caribbean Basin. In this study, the North American Regional Reanalysis (NARR) is analyzed to improve the understanding of the dynamics of the CLLJ and its relationship to regional rainfall variations. Horizontal momentum balances are examined to understand how jet variations on both diurnal and seasonal time scales are controlled. The jet is geostrophic to the first order. Its previously documented semidiurnal cycle (with minima at about 0400 and 1600 LT) is caused by semidiurnal cycling of the meridional geopotential height gradient in association with changes in the westward extension of the North Atlantic subtropical high (NASH). A diurnal cycle is superimposed, associated with a meridional land–sea breeze (solenoidal circulation) onto the north coast of South America, so that the weakest jet velo...
Journal of Climate | 2012
Edward K. Vizy; Kerry H. Cook
AbstractChanges in rainfall and temperature extremes are predicted by many global climate models as a response to greenhouse gas increases, and such changes will have significant environmental and social impacts. A regional climate model is used to predict changes in extremes across tropical and northern Africa for 2041–60 under a midline emissions forcing scenario. Six indicators are examined, including annual extreme and daily diurnal temperature ranges, heat wave days, number of dry days, number of extreme wet days, and extreme wet day rainfall intensity. Confidence in the projections is evaluated by examining the ensemble spread and the validation of extreme events in the twentieth-century simulation.Despite an increase in both daily minimum and maximum temperatures, diurnal temperature ranges decrease from West Africa to Ethiopia during spring and fall, over the Sahel during summer, and over the Congo basin during winter and spring. Diurnal temperature ranges increase over the Horn of Africa during b...
Journal of Climate | 2013
Kerry H. Cook; Edward K. Vizy
AbstractA regional climate model with 90-km horizontal resolution on a large domain is used to predict and analyze precipitation changes over East Africa caused by greenhouse gas increases. A pair of six-member ensembles is used: one representing the late twentieth century and another the mid-twenty-first century under a midline emissions scenario. The twentieth-century simulation uses boundary conditions from reanalysis climatology, and these are modified for the mid-twenty-first-century simulation using output from coupled GCMs. The twentieth-century simulation reproduces the observed climate well. In eastern Ethiopia and Somalia, the boreal spring rains that begin in May are cut short in the mid-twenty-first-century simulation. The cause is an anomalous dry, anticyclonic flow that develops over the Arabian Peninsula and the northern Arabian Sea as mass shifts eastward near 20°N in response to strong warming over the Sahara. In Tanzania and southern Kenya, the boreal springs long rains are reduced thro...
Journal of Climate | 2015
Belén Rodríguez-Fonseca; Elsa Mohino; Carlos R. Mechoso; Cyril Caminade; Michela Biasutti; Marco Gaetani; Javier García-Serrano; Edward K. Vizy; Kerry H. Cook; Yongkang Xue; Irene Polo; Teresa Losada; Leonard M. Druyan; Bernard Fontaine; Juergen Bader; Francisco J. Doblas-Reyes; Lisa M. Goddard; Serge Janicot; Alberto Arribas; William K. M. Lau; Andrew W. Colman; Michael Vellinga; David P. Rowell; Fred Kucharski; Aurore Voldoire
AbstractThe Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface–atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decada...
Journal of Climate | 2013
Edward K. Vizy; Kerry H. Cook; Julien Crétat; Naresh Neupane
AbstractConfident regional-scale climate change predictions for the Sahel are needed to support adaptation planning. State-of-the-art regional climate model (RCM) simulations at 90- and 30-km resolutions are run and analyzed along with output from five coupled atmosphere–ocean GCMs (AOGCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to predict how the Sahel summer surface temperature, precipitation, and surface moisture are likely to change at the mid- and late-twenty-first century due to increased atmospheric CO2 concentrations under the representative concentration pathway 8.5 (RCP8.5) emission scenario and evaluate confidence in such projections. Future lateral boundary conditions are derived from CMIP5 AOGCMs.It is shown that the regional climate model can realistically simulate the current summer evolution of the West African monsoon climate including the onset and demise of the Sahel wet season, a necessary but not sufficient condition for confident prediction.RCM and AOGCM pr...
Climate Dynamics | 2012
Kerry H. Cook; Edward K. Vizy
Changes in growing seasons for 2041–2060 across Africa are projected using a regional climate model at 90-km resolution, and confidence in the predictions is evaluated. The response is highly regional over West Africa, with decreases in growing season days up to 20% in the western Guinean coast and some regions to the east experiencing 5–10% increases. A longer growing season up to 30% in the central and eastern Sahel is predicted, with shorter seasons in parts of the western Sahel. In East Africa, the short rains (boreal fall) growing season is extended as the Indian Ocean warms, but anomalous mid-tropospheric moisture divergence and a northward shift of Sahel rainfall severely curtails the long rains (boreal spring) season. Enhanced rainfall in January and February increases the growing season in the Congo basin by 5–15% in association with enhanced southwesterly moisture transport from the tropical Atlantic. In Angola and the southern Congo basin, 40–80% reductions in austral spring growing season days are associated with reduced precipitation and increased evapotranspiration. Large simulated reductions in growing season over southeastern Africa are judged to be inaccurate because they occur due to a reduction in rainfall in winter which is over-produced in the model. Only small decreases in the actual growing season are simulated when evapotranspiration increases in the warmer climate. The continent-wide changes in growing season are primarily the result of increased evapotranspiration over the warmed land, changes in the intensity and seasonal cycle of the thermal low, and warming of the Indian Ocean.