Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward L. Conn is active.

Publication


Featured researches published by Edward L. Conn.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists.

Paul S. Humphries; John William Benbow; Paul D. Bonin; David Boyer; Shawn D. Doran; Richard K. Frisbie; David W. Piotrowski; Gayatri Balan; Bruce M. Bechle; Edward L. Conn; Kenneth J. DiRico; Robert M. Oliver; Walter C. Soeller; James A. Southers; Xiaojing Yang

The development of a series of novel 1,2,3,4-tetrahydroisoquinolin-1-ones as antagonists of G protein-coupled receptor 40 (GPR40) is described. The synthesis, in vitro inhibitory values for GPR40, in vitro microsomal clearance and rat in vivo clearance data are discussed. Initial hits displayed high rat in vivo clearances that were higher than liver blood flow. Optimization of rat in vivo clearance was achieved and led to the identification of 15i, whose rat oral pharmacokinetic data is reported.


Journal of Medicinal Chemistry | 2016

Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy.

Kimberly O'keefe Cameron; Daniel W. Kung; Amit S. Kalgutkar; Ravi G. Kurumbail; Russell A. Miller; Christopher T. Salatto; Jessica Ward; Jane M. Withka; Samit Kumar Bhattacharya; Markus Boehm; Kris A. Borzilleri; Janice A. Brown; Matthew F. Calabrese; Nicole Caspers; Emily Cokorinos; Edward L. Conn; Matthew S. Dowling; David J. Edmonds; Heather Eng; Dilinie P. Fernando; Richard K. Frisbie; David Hepworth; James A. Landro; Yuxia Mao; Francis Rajamohan; Allan R. Reyes; Colin R. Rose; Tim Ryder; Andre Shavnya; Aaron Smith

Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.


Organic Letters | 2014

Expedient Synthesis of α-(2-Azaheteroaryl) Acetates via the Addition of Silyl Ketene Acetals to Azine-N-oxides

Allyn T. Londregan; Kristen Burford; Edward L. Conn; Kevin D. Hesp

A new and expedient synthesis of α-(2-azaheteroaryl) acetates is presented. The reaction proceeds rapidly under mild conditions via the addition of silyl ketene acetals to azine-N-oxides in the presence of the phosphonium salt PyBroP. This procedure affords diverse α-(2-azaheteroaryl) acetates which are highly desirable components/building blocks in molecules of pharmaceutical interest but are traditionally challenging to synthesize via contemporary methods. The reaction optimization and mechanism as well as a novel electronically enhanced PyBroP derivative are described.


Bioorganic & Medicinal Chemistry | 2003

Design and synthesis of a novel family of triazine-based inhibitors of sorbitol dehydrogenase with oral activity: 1-{4-[3R,5S-dimethyl-4-(4-methyl-[1,3,5]triazin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-(R) ethanol

Banavara L. Mylari; Gregory J. Withbroe; David A. Beebe; Nathaniel S. Brackett; Edward L. Conn; James B. Coutcher; Peter J. Oates; William James Zembrowski

Two new templates, (R) 2-hydroxyethyl-pyridine and (R) 2-hydroxyethyl-triazine, were used to design novel sorbitol dehydrogenase inhibitors (SDIs). The design concept included spawning of these templates to function as effective ligands to the catalytic zinc within the enzyme through incorporation of optimally substituted piperazino-triazine side chains so as to accommodate the active site in the enzyme for efficient binding. This strategy resulted in orally active SDIs, which penetrate key tissues, for example, sciatic nerve of chronically diabetic rats. The latter template led to the design of the title inhibitor, 33, which normalized the elevated sciatic nerve fructose by 96% at an oral dose of 10mg/kg.


Journal of Medicinal Chemistry | 2015

Discovery of 2-(6-(5-Chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999): A Highly Selective Mechanism-Based Myeloperoxidase Inhibitor for the Treatment of Cardiovascular Diseases.

Roger Benjamin Ruggeri; Leonard Buckbinder; Scott W. Bagley; Philip A. Carpino; Edward L. Conn; Matthew S. Dowling; Dilinie P. Fernando; Wenhua Jiao; Daniel W. Kung; Suvi T. M. Orr; Yingmei Qi; Benjamin N. Rocke; Aaron Smith; Joseph Scott Warmus; Yan Zhang; Daniel Bowles; Daniel W. Widlicka; Heather Eng; Tim Ryder; Raman Sharma; Angela Wolford; Carlin Okerberg; Karen Walters; Tristan S. Maurer; Yanwei Zhang; Paul D. Bonin; Samantha N. Spath; Gang Xing; David Hepworth; Kay Ahn

Myeloperoxidase (MPO) is a heme peroxidase that catalyzes the production of hypochlorous acid. Clinical evidence suggests a causal role for MPO in various autoimmune and inflammatory disorders including vasculitis and cardiovascular and Parkinsons diseases, implying that MPO inhibitors may represent a therapeutic treatment option. Herein, we present the design, synthesis, and preclinical evaluation of N1-substituted-6-arylthiouracils as potent and selective inhibitors of MPO. Inhibition proceeded in a time-dependent manner by a covalent, irreversible mechanism, which was dependent upon MPO catalysis, consistent with mechanism-based inactivation. N1-Substituted-6-arylthiouracils exhibited low partition ratios and high selectivity for MPO over thyroid peroxidase and cytochrome P450 isoforms. N1-Substituted-6-arylthiouracils also demonstrated inhibition of MPO activity in lipopolysaccharide-stimulated human whole blood. Robust inhibition of plasma MPO activity was demonstrated with the lead compound 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999, 8) upon oral administration to lipopolysaccharide-treated cynomolgus monkeys. On the basis of its pharmacological and pharmacokinetic profile, PF-06282999 has been advanced to first-in-human pharmacokinetic and safety studies.


ACS Medicinal Chemistry Letters | 2013

Chemical Probe Identification Platform for Orphan GPCRs Using Focused Compound Screening: GPR39 as a Case Example.

Markus Boehm; David Hepworth; Paula M. Loria; Lisa D. Norquay; Kevin J. Filipski; Janice E. Chin; Kimberly O'keefe Cameron; Martin B. Brenner; Peter Bonnette; Shawn Cabral; Edward L. Conn; David Christopher Ebner; Denise Gautreau; John R. Hadcock; Esther Cheng Yin Lee; Alan M. Mathiowetz; Michelle Morin; Lucy Rogers; Aaron Smith; Maria VanVolkenburg; Philip A. Carpino

Orphan G protein-coupled receptors (oGPCRs) are a class of integral membrane proteins for which endogenous ligands or transmitters have not yet been discovered. Transgenic animal technologies have uncovered potential roles for many of these oGPCRs, providing new targets for the treatment of various diseases. Understanding signaling pathways of oGPCRs and validating these receptors as potential drug targets requires the identification of chemical probe compounds to be used in place of endogenous ligands to interrogate these receptors. A novel chemical probe identification platform was created in which GPCR-focused libraries were screened against sets of oGPCR targets, with a goal of discovering fit-for-purpose chemical probes for the more druggable members of the set. Application of the platform to a set of oGPCRs resulted in the discovery of the first reported small molecule agonists for GPR39, a receptor implicated in the regulation of insulin secretion and preservation of beta cells in the pancreas. Compound 1 stimulated intracellular calcium mobilization in recombinant and native cells in a GPR39-specific manner but did not potentiate glucose-stimulated insulin secretion in human islet preparations.


Angewandte Chemie | 2016

Discovery of a Highly Selective Glycogen Synthase Kinase-3 Inhibitor (PF-04802367) That Modulates Tau Phosphorylation in the Brain: Translation for PET Neuroimaging.

Steven H. Liang; Jinshan Michael Chen; Marc D. Normandin; Jeanne S. Chang; George Chang; Christine Taylor; Patrick Trapa; Mark Stephen Plummer; Kimberly Suzanne Para; Edward L. Conn; Lori L. Lopresti-Morrow; Lorraine Lanyon; James M. Cook; Karl E.G. Richter; Charlie E Nolan; Joel B. Schachter; Fouad Janat; Ye Che; Veerabahu Shanmugasundaram; Bruce Allen Lefker; Bradley E. Enerson; E. Livni; Lu Wang; Nicolas Guehl; Debasis Patnaik; Florence F. Wagner; Roy H. Perlis; Edward B. Holson; Stephen J. Haggarty; Georges El Fakhri

Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes in diabetes, oncology, and neurology. N-(3-(1H-1,2,4-triazol-1-yl)propyl)-5-(3-chloro-4-methoxyphenyl)oxazole-4-carboxamide (PF-04802367 or PF-367) has been identified as a highly potent inhibitor, which is among the most selective antagonists of GSK-3 to date. Its efficacy was demonstrated in modulation of tau phosphorylation in vitro and in vivo. Whereas the kinetics of PF-367 binding in brain tissues are too fast for an effective therapeutic agent, the pharmacokinetic profile of PF-367 is ideal for discovery of radiopharmaceuticals for GSK-3 in the central nervous system. A (11) C-isotopologue of PF-367 was synthesized and preliminary PET imaging studies in non-human primates confirmed that we have overcome the two major obstacles for imaging GSK-3, namely, reasonable brain permeability and displaceable binding.


ACS Medicinal Chemistry Letters | 2018

Discovery of Orally Bioavailable Selective Inhibitors of the Sodium-Phosphate Cotransporter NaPi2a (SLC34A1)

Kevin J. Filipski; Matthew F. Sammons; Samit Kumar Bhattacharya; Jane Panteleev; Janice A. Brown; Paula M. Loria; Markus Boehm; Aaron Smith; Andre Shavnya; Edward L. Conn; Kun Song; Yan Weng; Carie Facemire; Harald Jüppner; Valerie Clerin

Sodium-phosphate cotransporter 2a, or NaPi2a (SLC34A1), is a solute-carrier (SLC) transporter located in the kidney proximal tubule that reabsorbs glomerular-filtered phosphate. Inhibition of NaPi2a may enhance urinary phosphate excretion and correct maladaptive mineral and hormonal derangements associated with increased cardiovascular risk in chronic kidney disease-mineral and bone disorder (CKD-MBD). To date, only nonselective NaPi inhibitors have been described. Herein, we detail the discovery of the first series of selective NaPi2a inhibitors, resulting from optimization of a high-throughput screening hit. The oral PK profile of inhibitor PF-06869206 (6f) in rodents allows for the exploration of the pharmacology of selective NaPi2a inhibition.


Journal of Medicinal Chemistry | 2018

Optimization of Metabolic and Renal Clearance in a Series of Indole Acid Direct Activators of 5′-Adenosine Monophosphate-Activated Protein Kinase (AMPK)

David J. Edmonds; Daniel W. Kung; Amit S. Kalgutkar; Kevin J. Filipski; David Christopher Ebner; Shawn Cabral; Aaron Smith; Gary E. Aspnes; Samit Kumar Bhattacharya; Kris A. Borzilleri; Janice A. Brown; Matthew F. Calabrese; Nicole Caspers; Emily Cokorinos; Edward L. Conn; Matthew S. Dowling; Heather Eng; Bo Feng; Dilinie P. Fernando; Nathan E. Genung; Michael Herr; Ravi G. Kurumbail; Sophie Y. Lavergne; Esther Cheng Yin Lee; Qifang Li; Sumathy Mathialagan; Russell A. Miller; Jane Panteleev; Jana Polivkova; Francis Rajamohan

Optimization of the pharmacokinetic (PK) properties of a series of activators of adenosine monophosphate-activated protein kinase (AMPK) is described. Derivatives of the previously described 5-aryl-indole-3-carboxylic acid clinical candidate (1) were examined with the goal of reducing glucuronidation rate and minimizing renal excretion. Compounds 10 (PF-06679142) and 14 (PF-06685249) exhibited robust activation of AMPK in rat kidneys as well as desirable oral absorption, low plasma clearance, and negligible renal clearance in preclinical species. A correlation of in vivo renal clearance in rats with in vitro uptake by human and rat renal organic anion transporters (human OAT/rat Oat) was identified. Variation of polar functional groups was critical to mitigate active renal clearance mediated by the Oat3 transporter. Modification of either the 6-chloroindole core to a 4,6-difluoroindole or the 5-phenyl substituent to a substituted 5-(3-pyridyl) group provided improved metabolic stability while minimizing propensity for active transport by OAT3.


Journal of Medicinal Chemistry | 2017

Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK)

Kim Huard; Kay Ahn; Paul Amor; David A. Beebe; Kris A. Borzilleri; Boris A. Chrunyk; Steven B. Coffey; Yang Cong; Edward L. Conn; Jeffrey S. Culp; Matthew S. Dowling; Matthew Gorgoglione; Jemy A. Gutierrez; John D. Knafels; Erik LaChapelle; Jayvardhan Pandit; Kevin D. Parris; Sylvie Perez; Jeffrey A. Pfefferkorn; David A. Price; Brian Raymer; Trenton T. Ross; Andre Shavnya; Aaron Smith; Timothy A. Subashi; Gregory Tesz; Benjamin A. Thuma; Meihua Tu; John D. Weaver; Yan Weng

Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may help to further elucidate the effect of KHK inhibition on these metabolic disorders. Until now, studies on KHK inhibition with small molecules have been limited due to the lack of viable in vivo pharmacological tools. Herein we report the discovery of 12, a selective KHK inhibitor with potency and properties suitable for evaluating KHK inhibition in rat models. Key structural features interacting with KHK were discovered through fragment-based screening and subsequent optimization using structure-based drug design, and parallel medicinal chemistry led to the identification of pyridine 12.

Collaboration


Dive into the Edward L. Conn's collaboration.

Researchain Logo
Decentralizing Knowledge