Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward L. Pohlmann is active.

Publication


Featured researches published by Edward L. Pohlmann.


Journal of Bacteriology | 2001

Functional Characterization of Three GlnB Homologs in the Photosynthetic Bacterium Rhodospirillum rubrum: Roles in Sensing Ammonium and Energy Status

Yaoping Zhang; Edward L. Pohlmann; Paul W. Ludden; Gary P. Roberts

The GlnB (P(II)) protein, the product of glnB, has been characterized previously in the photosynthetic bacterium Rhodospirillum rubrum. Here we describe identification of two other P(II) homologs in this organism, GlnK and GlnJ. Although the sequences of these three homologs are very similar, the molecules have both distinct and overlapping functions in the cell. While GlnB is required for activation of NifA activity in R. rubrum, GlnK and GlnJ do not appear to be involved in this process. In contrast, either GlnB or GlnJ can serve as a critical element in regulation of the reversible ADP ribosylation of dinitrogenase reductase catalyzed by the dinitrogenase reductase ADP-ribosyl transferase (DRAT)/dinitrogenase reductase-activating glycohydrolase (DRAG) regulatory system. Similarly, either GlnB or GlnJ is necessary for normal growth on a variety of minimal and rich media, and any of the proteins is sufficient for normal posttranslational regulation of glutamine synthetase. Surprisingly, in their regulation of the DRAT/DRAG system, GlnB and GlnJ appeared to be responsive not only to changes in nitrogen status but also to changes in energy status, revealing a new role for this family of regulators in central metabolic regulation.


Journal of Bacteriology | 2000

Mutagenesis and Functional Characterization of the glnB, glnA, and nifA Genes from the Photosynthetic Bacterium Rhodospirillum rubrum

Yaoping Zhang; Edward L. Pohlmann; Paul W. Ludden; Gary P. Roberts

Nitrogen fixation is tightly regulated in Rhodospirillum rubrum at two different levels: transcriptional regulation of nif expression and posttranslational regulation of dinitrogenase reductase by reversible ADP-ribosylation catalyzed by the DRAT-DRAG (dinitrogenase reductase ADP-ribosyltransferase-dinitrogenase reductase-activating glycohydrolase) system. We report here the characterization of glnB, glnA, and nifA mutants and studies of their relationship to the regulation of nitrogen fixation. Two mutants which affect glnB (structural gene for P(II)) were constructed. While P(II)-Y51F showed a lower nitrogenase activity than that of wild type, a P(II) deletion mutant showed very little nif expression. This effect of P(II) on nif expression is apparently the result of a requirement of P(II) for NifA activation, whose activity is regulated by NH(4)(+) in R. rubrum. The modification of glutamine synthetase (GS) in these glnB mutants appears to be similar to that seen in wild type, suggesting that a paralog of P(II) might exist in R. rubrum and regulate the modification of GS. P(II) also appears to be involved in the regulation of DRAT activity, since an altered response to NH(4)(+) was found in a mutant expressing P(II)-Y51F. The adenylylation of GS plays no significant role in nif expression or the ADP-ribosylation of dinitrogenase reductase, since a mutant expressing GS-Y398F showed normal nitrogenase activity and normal modification of dinitrogenase reductase in response to NH(4)(+) and darkness treatments.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria

Rembrandt J. F. Haft; David H. Keating; Tyler Schwaegler; Michael S. Schwalbach; Jeffrey Vinokur; Mary Tremaine; Jason M. Peters; Matthew V. Kotlajich; Edward L. Pohlmann; Irene M. Ong; Jeffrey A. Grass; Patricia J. Kiley; Robert Landick

Significance Microbially produced aliphatic alcohols are important biocommodities but exert toxic effects on cells. Understanding the mechanisms by which these alcohols inhibit microbial growth and generate resistant microbes will provide insight into microbial physiology and improve prospects for microbial biotechnology and biofuel production. We find that Escherichia coli ribosomes and RNA polymerase are mechanistically affected by ethanol, identifying the ribosome decoding center as a likely target of ethanol-mediated conformational disruption and showing that ethanol inhibits transcript elongation via direct effects on RNA polymerase. Our findings provide conceptual frameworks for the study of ethanol toxicity in microbes and for the engineering of ethanol tolerance that may be extensible to other microbes and to other short-chain alcohols. The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol.


Journal of Bacteriology | 2005

GlnD Is Essential for NifA Activation, NtrB/NtrC-Regulated Gene Expression, and Posttranslational Regulation of Nitrogenase Activity in the Photosynthetic, Nitrogen-Fixing Bacterium Rhodospirillum rubrum

Yaoping Zhang; Edward L. Pohlmann; Gary P. Roberts

GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme and is thought to be the primary sensor of nitrogen status in the cell. It plays an important role in nitrogen assimilation and metabolism by reversibly regulating the modification of P(II) proteins, which in turn regulate a variety of other proteins. We report here the characterization of glnD mutants from the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum and the analysis of the roles of GlnD in the regulation of nitrogen fixation. Unlike glnD mutations in Azotobacter vinelandii and some other bacteria, glnD deletion mutations are not lethal in R. rubrum. Such mutants grew well in minimal medium with glutamate as the sole nitrogen source, although they grew slowly with ammonium as the sole nitrogen source (MN medium) and were unable to fix N(2). The slow growth in MN medium is apparently due to low glutamine synthetase activity, because a DeltaglnD strain with an altered glutamine synthetase that cannot be adenylylated can grow well in MN medium. Various mutation and complementation studies were used to show that the critical uridylyltransferase activity of GlnD is localized to the N-terminal region. Mutants with intermediate levels of uridylyltransferase activity are differentially defective in nif gene expression, the posttranslational regulation of nitrogenase, and NtrB/NtrC function, indicating the complexity of the physiological role of GlnD. These results have implications for the interpretation of results obtained with GlnD in many other organisms.


PLOS ONE | 2014

Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.

Lucas S. Parreiras; Rebecca J. Breuer; Ragothaman Avanasi Narasimhan; Alan Higbee; Alex La Reau; Mary Tremaine; Li Qin; Laura B. Willis; Benjamin D. Bice; Brandi L. Bonfert; Rebeca C. Pinhancos; Allison J. Balloon; Nirmal Uppugundla; Tongjun Liu; Chenlin Li; Deepti Tanjore; Irene M. Ong; Haibo Li; Edward L. Pohlmann; Jose Serate; Sydnor T. Withers; Blake A. Simmons; David B. Hodge; Michael S. Westphall; Joshua J. Coon; Bruce E. Dale; Venkatesh Balan; David H. Keating; Yaoping Zhang; Robert Landick

The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.


Journal of Bacteriology | 2001

Effect of P(II) and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regulatory system in Klebsiella pneumoniae.

Yaoping Zhang; Edward L. Pohlmann; Cale M. Halbleib; Paul W. Ludden; Gary P. Roberts

Reversible ADP-ribosylation of dinitrogenase reductase, catalyzed by the dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase (DRAT-DRAG) regulatory system, has been characterized in Rhodospirillum rubrum and other nitrogen-fixing bacteria. To investigate the mechanisms for the regulation of DRAT and DRAG activities, we studied the heterologous expression of R. rubrum draTG in Klebsiella pneumoniae glnB and glnK mutants. In K. pneumoniae wild type, the regulation of both DRAT and DRAG activity appears to be comparable to that seen in R. rubrum. However, the regulation of both DRAT and DRAG activities is altered in a glnB background. Some DRAT escapes regulation and becomes active under N-limiting conditions. The regulation of DRAG activity is also altered in a glnB mutant, with DRAG being inactivated more slowly in response to NH4+ treatment than is seen in wild type, resulting in a high residual nitrogenase activity. In a glnK background, the regulation of DRAT activity is similar to that seen in wild type. However, the regulation of DRAG activity is completely abolished in the glnK mutant; DRAG remains active even after NH4+ addition, so there is no loss of nitrogenase activity. The results with this heterologous expression system have implications for DRAT-DRAG regulation in R. rubrum.


Journal of Bacteriology | 2010

Mutagenesis and Functional Characterization of the Four Domains of GlnD, a Bifunctional Nitrogen Sensor Protein

Yaoping Zhang; Edward L. Pohlmann; Jose Serate; Mary Conrad; Gary P. Roberts

GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme (UTase/UR) and is believed to be the primary sensor of nitrogen status in the cell by sensing the level of glutamine in enteric bacteria. It plays an important role in nitrogen assimilation and metabolism by reversibly regulating the modification of P(II) protein; P(II) in turn regulates a variety of other proteins. GlnD appears to have four distinct domains: an N-terminal nucleotidyltransferase (NT) domain; a central HD domain, named after conserved histidine and aspartate residues; and two C-terminal ACT domains, named after three of the allosterically regulated enzymes in which this domain is found. Here we report the functional analysis of these domains of GlnD from Escherichia coli and Rhodospirillum rubrum. We confirm the assignment of UTase activity to the NT domain and show that the UR activity is a property specifically of the HD domain: substitutions in this domain eliminated UR activity, and a truncated protein lacking the NT domain displayed UR activity. The deletion of C-terminal ACT domains had little effect on UR activity itself but eliminated the ability of glutamine to stimulate that activity, suggesting a role for glutamine sensing by these domains. The deletion of C-terminal ACT domains also dramatically decreased UTase activity under all conditions tested, but some of these effects are due to the competition of UTase activity with unregulated UR activity in these variants.


Journal of Bacteriology | 2011

The Poor Growth of Rhodospirillum rubrum Mutants Lacking RubisCO Is Due to the Accumulation of Ribulose-1,5-Bisphosphate

Di Wang; Yaoping Zhang; Edward L. Pohlmann; Jilun Li; Gary P. Roberts

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first step of CO(2) fixation in the Calvin-Benson-Bassham (CBB) cycle. Besides its function in fixing CO(2) to support photoautotrophic growth, the CBB cycle is also important under photoheterotrophic growth conditions in purple nonsulfur photosynthetic bacteria. It has been assumed that the poor photoheterotrophic growth of RubisCO-deficient strains was due to the accumulation of excess intracellular reductant, which implied that the CBB cycle is important for maintaining the redox balance under these conditions. However, we present analyses of cbbM mutants in Rhodospirillum rubrum that indicate that toxicity is the result of an elevated intracellular pool of ribulose-1,5-bisphosphate (RuBP). There is a redox effect on growth, but it is apparently an indirect effect on the accumulation of RuBP, perhaps by the regulation of the activities of enzymes involved in RuBP regeneration. Our studies also show that the CBB cycle is not essential for R. rubrum to grow under photoheterotrophic conditions and that its role in controlling the redox balance needs to be further elucidated. Finally, we also show that CbbR is a positive transcriptional regulator of the cbb operon (cbbEFPT) in R. rubrum, as seen with related organisms, and define the transcriptional organization of the cbb genes.


Molecular Microbiology | 2006

The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity.

Yaoping Zhang; Edward L. Pohlmann; Mary Conrad; Gary P. Roberts

The PII family of proteins is found in all three domains of life and serves as a central regulator of the function of proteins involved in nitrogen metabolism, reflecting the nitrogen and carbon balance in the cell. The genetic elimination of the genes encoding these proteins typically leads to severe growth problems, but the basis of this effect has been unknown except with Escherichia coli. We have analysed a number of the suppressor mutations that correct such growth problems in Rhodospirillum rubrum mutants lacking PII proteins. These suppressors map to nifR3, ntrB, ntrC, amtB1 and the glnA region and all have the common property of decreasing total activity of glutamine synthetase (GS). We also show that GS activity is very high in the poorly growing parental strains lacking PII proteins. Consistent with this, overexpression of GS in glnE mutants (lacking adenylyltransferase activity) also causes poor growth. All of these results strongly imply that elevated GS activity is the causative basis for the poor growth seen in R. rubrum mutants lacking PII and presumably in mutants of some other organisms with similar genotypes. The result underscores the importance of proper regulation of GS activity for cell growth.


Microbiology | 2008

Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum

Xiaoxiao Zou; Yu Zhu; Edward L. Pohlmann; Jilun Li; Yaoping Zhang; Gary P. Roberts

The activity of NifA, the transcriptional activator of the nitrogen fixation (nif) gene, is tightly regulated in response to ammonium and oxygen. However, the mechanisms for the regulation of NifA activity are quite different among various nitrogen-fixing bacteria. Unlike the well-studied NifL-NifA regulatory systems in Klebsiella pneumoniae and Azotobacter vinelandii, in Rhodospirillum rubrum NifA is activated by a direct protein-protein interaction with the uridylylated form of GlnB, which in turn causes a conformational change in NifA. We report the identification of several substitutions in the N-terminal GAF domain of R. rubrum NifA that allow NifA to be activated in the absence of GlnB. Presumably these substitutions cause conformational changes in NifA necessary for activation, without interaction with GlnB. We also found that wild-type NifA can be activated in a GlnB-independent manner under certain growth conditions, suggesting that some other effector(s) can also activate NifA. An attempt to use Tn5 mutagenesis to obtain mutants that altered the pool of these presumptive effector(s) failed, though much rarer spontaneous mutations in nifA were detected. This suggests that the necessary alteration of the pool of effector(s) for NifA activation cannot be obtained by knockout mutations.

Collaboration


Dive into the Edward L. Pohlmann's collaboration.

Top Co-Authors

Avatar

Yaoping Zhang

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Gary P. Roberts

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jose Serate

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Alan Higbee

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Dan Xie

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Dustin Eilert

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Gregg R. Sanford

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Joshua J. Coon

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lawrence G. Oates

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Paul W. Ludden

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge