Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward M. Bonder is active.

Publication


Featured researches published by Edward M. Bonder.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Rho-dependent formation of epithelial “leader” cells during wound healing

T. Omelchenko; Jury M. Vasiliev; Gel'fand Im; H. H. Feder; Edward M. Bonder

The motile behavior of epithelial cells located at the edge of a large wound in a monolayer of cultured cells was analyzed. The initial cellular response is alignment of the edge with an accompanying formation of tangential marginal actin bundles within individual cells positioned along the wound edge. Later, coherent out-growths of cell masses occur by the formation of special “leader” cells at the tops of outgrowths and “follower” cells along the sides. Leader cells exhibit profound cytoskeletal reorganization, including disassembly of marginal bundles, the realignment of actin filament bundles, and penetration of microtubules into highly active lamellae. Additionally, cell–cell contacts acquire radial geometry indicative of increased contractile tension. Interestingly, leader cells acquire a cytoskeletal organization and motility typical of fibroblasts. IAR-2 cultures stably transfected with a dominant-negative mutant of RhoA or treated with Rho-kinase inhibitor Y-27632 transformed most edge cells into leader-like cells. Alternatively, transfection of cells with constitutively active RhoA suppressed formation of leaders. Thus, expansion of the epithelial sheet involves functional differentiation into two distinct types of edge cells. The transition between these two patterns is controlled by Rho activity, which in turn controls the dynamic distribution and activity of actin filament bundles, myosin II, and microtubules.


Journal of the American Chemical Society | 2013

Electron-Deficient Triarylborane Block Copolymers: Synthesis by Controlled Free Radical Polymerization and Application in the Detection of Fluoride Ions

Fei Cheng; Edward M. Bonder; Frieder Jäkle

Luminescent triarylborane homo and block copolymers with well-defined chain architectures were synthesized via reversible addition-fragmentation chain transfer polymerization of a vinyl-functionalized borane monomer. The Lewis acid properties of the polymers were exploited in the luminescent detection of fluoride ions. A dual-responsive fluoride sensor was developed by taking advantage of the reversible self-assembly of a PNIPAM-based amphiphilic block copolymer. Anion detection in aqueous solution was realized by introducing positively charged pyridinium moieties along the polymer chain.


Cytoskeleton | 1999

Analysis of actin filament bundle dynamics during contact formation in live epithelial cells.

Mira Krendel; Edward M. Bonder

The actin cytoskeleton is an integral component of the cell-cell adherens junction complex. We used fluorescence labeling of actin filaments and time-lapse laser scanning confocal microscopy to investigate the functional relationship between the organization of the actin cytoskeleton and formation of adherens junctions in live epithelial cells. Rhodamine-phalloidin was loaded into cultured cells by wounding epithelial monolayers in the presence of fluorescent analog. Rhodamine-phalloidin was incorporated into the actin filaments in stress fibers, circumferential bundles, and marginal bundles. Cells containing labeled actin filaments appeared physiologically normal since the rates of migration, rates of pseudopodial protrusion/retraction, ability to form contacts, and sensitivity to cytochalasin B were equivalent to non-loaded, control epithelial cells. Marginal actin bundles initially formed as bow-shaped bundles that were observed to straighten as the bundles flowed rearward and away from the free cell edge. When lamellae from adjacent cells made contact, rearward flow of marginal bundles ceased and the bundles started to disassemble with higher frequency. Next, we observed the formation of arc-like bundles at the edges of contacting cells, a position suggestive of a role in lateral expansion of the contact. During later stages of contact formation, new actin bundles assembled along the length of the expanding cell-cell boundary. These newly formed bundles are likely to participate in the establishment of the initial cadherin/actin cytoskeleton linkage and eventually form the circumferential bundles at the cell-cell adherens junction. Additionally, indirect immunolocalization studies characterized the location of myosin-II. A model is presented describing the function of the spatial and temporal dynamics of actin filament bundles and myosin-II activity in the formation of adherens junctions.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Contact interactions between epitheliocytes and fibroblasts: Formation of heterotypic cadherin-containing adhesion sites is accompanied by local cytoskeletal reorganization

T. Omelchenko; E. Fetisova; O. Ivanova; Edward M. Bonder; H. H. Feder; Jury M. Vasiliev; Gel'fand Im

Contact interactions between different cell types play a number of important roles in development, for example in cell sorting, tissue organization, and ordered migration of cells. The nature of such heterocellular interactions, in contrast to interactions between cells of the same type, remains largely unknown. In this report, we present experimental data examining the dynamics of heterocellular interactions between epitheliocytes and fibroblasts, which express different cadherin cell adhesion molecules and possess different actin cytoskeletal organizations. Our analysis revealed two striking features of heterocellular contact. First, the active free edge of an epitheliocyte reorganizes its actin cytoskeleton after making contact with a fibroblast. Upon contact with the leading edge of a fibroblast, epitheliocytes disassemble their marginal bundle of actin filaments and reassemble actin filaments into a geometric organization more typical of a fibroblast lamella. Second, epitheliocytes and fibroblasts form cell–cell adhesion structures that have an irregular organization and are associated with components of cell adhesion complexes. The structural organization of these adhesions is more closely related to the type of contacts formed between fibroblasts rather than to those between epitheliocytes. Heterotypic epithelio-fibroblastic contacts, like homotypic contacts between fibroblasts, are transient and do not lead to formation of stable contact interactions. We suggest that heterocellular contact interactions in culture may be regarded as models of how tissue systems consisting of epithelia and mesenchyme interact and become organized in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Mechanisms of polarization of the shape of fibroblasts and epitheliocytes: Separation of the roles of microtubules and Rho-dependent actin-myosin contractility.

T. Omelchenko; Jury M. Vasiliev; Gel'fand Im; H. H. Feder; Edward M. Bonder

Cultured fibroblasts possess a characteristic polarized phenotype manifested by an elongate cell body with an anterior lamella whose cell edge is divided into protrusion-forming and inactive zones. Disruption of the fibroblast microtubule cytoskeleton leads to an increase in Rho-dependent acto-myosin contractile activity and concomitant loss of structural polarity. The functional relationship of myosin-driven contractile activity to loss of fibroblast anterior–posterior polarity is unknown. To dissect the roles of microtubule assembly and of Rho-dependent contractility on structural polarization of cells, polarized fibroblasts and nonpolarized epitheliocytes were treated with the microtubule-depolymerizing drug, nocodazole, and/or the Rho kinase inhibitor, Y-27632. Fibroblasts incubated with Y-27632 increased their degree of polarization by developing a highly elongate cell body with multiple narrow processes extended from the edges of the cell. Treatment of fibroblasts with nocodazole, alone or in combination with Rho kinase inhibitor, produced discoid or polygonal cells having broad, flattened lamellae that did not form long lamellar extensions. Single cultured epitheliocytes of the IAR-2 line do not display anterior–posterior polarization. When treated with Y-27632, the cells acquired a polarized, elongate shape with narrow protrusions and wide lamellas. Nocodazole alone or in combination with Y-27632 did not change the discoid shape of epitheliocytes, however treatment with Y-27632 produced thinning of the lamellar cytoplasm. We conclude that microtubules provide the necessary framework for polarization of fibroblasts and epitheliocytes, whereas Rho-regulated contractility modulates the degree of polarization of fibroblasts and completely inhibits polarization in epitheliocytes.


Developmental Biology | 1990

Subcellular localization of sea urchin egg spectrin: evidence for assembly of the membrane-skeleton on unique classes of vesicles in eggs and embryos.

Douglas J. Fishkind; Edward M. Bonder; David A. Begg

A recent study from our laboratory on the sea urchin egg suggested that spectrin was not solely restricted to the plasma membrane, but instead had a more widespread distribution on the surface of a variety of membranous inclusions. (E. M. Bonder et al., 1989, Dev. Biol. 134, 327-341). In this report we extend our initial findings and provide experimental and ultrastructural evidence for the presence of spectrin on three distinct classes of cytoplasmic vesicles. Immunoblot analysis of membrane fractions prepared from egg homogenates establishes that spectrin coisolates with vesicle-enriched fractions, while indirect immunofluorescence microscopy on cryosections of centrifugally stratified eggs demonstrates that spectrin specifically associates with cortical granules, acidic vesicles, and yolk platelets in vivo. Immunogold ultrastructural localization of spectrin on cortices isolated from eggs and early embryos details the striking distribution of spectrin on the cytoplasmic surface of the plasma membrane and the membranes of cortical granules, acidic vesicles, and yolk platelets, while quantitative studies show that relatively equivalent amounts of spectrin are present on the different membrane surfaces both before and after fertilization. These data, in combination with the localization of numerous spectrin crosslinks between actin filaments in surface microvilli, suggest that spectrin plays a pivotal role in structuring the cortical membrane-cytoskeletal complex of the egg and the embryo.


The EMBO Journal | 2014

TLR sorting by Rab11 endosomes maintains intestinal epithelial‐microbial homeostasis

Shiyan Yu; Yingchao Nie; Byron C. Knowles; Ryotaro Sakamori; Ewa Stypulkowski; Chirag Patel; Soumyashree Das; Veronique Douard; Ronaldo P. Ferraris; Edward M. Bonder; James R. Goldenring; Yicktung Tony Ip; Nan Gao

Compartmentalization of Toll‐like receptors (TLRs) in intestinal epithelial cells (IECs) regulates distinct immune responses to microbes; however, the specific cellular machinery that controls this mechanism has not been fully identified. Here we provide genetic evidences that the recycling endosomal compartment in enterocytes maintains a homeostatic TLR9 intracellular distribution, supporting mucosal tolerance to normal microbiota. Genetic ablation of a recycling endosome resident small GTPase, Rab11a, a gene adjacent to a Crohns disease risk locus, in mouse IECs and in Drosophila midgut caused epithelial cell‐intrinsic cytokine production, inflammatory bowel phenotype, and early mortality. Unlike wild‐type controls, germ‐free Rab11a‐deficient mouse intestines failed to tolerate the intraluminal stimulation of microbial agonists. Thus, Rab11a endosome controls intestinal host‐microbial homeostasis at least partially via sorting TLRs.


Cancer Research | 2014

CDC42 Inhibition Suppresses Progression of Incipient Intestinal Tumors

Ryotaro Sakamori; Shiyan Yu; Xiao Zhang; Andrew Hoffman; Jiaxin Sun; Soumyashree Das; Pavan Vedula; Guangxun Li; Jiang Fu; Francesca Walker; Chung S. Yang; Zheng Yi; Wei Hsu; Da Hai Yu; Lanlan Shen; Alexis J. Rodriguez; Makoto M. Taketo; Edward M. Bonder; Michael P. Verzi; Nan Gao

Mutations in the APC or β-catenin genes are well-established initiators of colorectal cancer, yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacologic approaches in mouse colorectal cancer and human colorectal cancer xenograft models, we show that incipient intestinal tumor cells activate CDC42, an APC-interacting small GTPase, as a crucial step in malignant progression. In the mouse, Cdc42 ablation attenuated the tumorigenicity of mutant intestinal cells carrying single APC or β-catenin mutations. Similarly, human colorectal cancer with relatively higher levels of CDC42 activity was particularly sensitive to CDC42 blockade. Mechanistic studies suggested that Cdc42 may be activated at different levels, including at the level of transcriptional activation of the stem cell-enriched Rho family exchange factor Arhgef4. Our results indicate that early-stage mutant intestinal epithelial cells must recruit the pleiotropic functions of Cdc42 for malignant progression, suggesting its relevance as a biomarker and therapeutic target for selective colorectal cancer intervention.


Polymer Chemistry | 2012

Organoboron star polymersvia arm-first RAFT polymerization: synthesis, luminescent behavior, and aqueous self-assembly

Fei Cheng; Edward M. Bonder; Ami Doshi; Frieder Jäkle

The first examples of organoboron star polymers were prepared by arm-first RAFT polymerization using a novel luminescent organoboron crosslinker in combination with PS, PNIPAM, P4VP, and PNIPAM-b-PS as linear polymer precursors. Well-defined star architectures with a luminescent core were successfully obtained as confirmed by GPC-MALLS, NMR, DLS, and TEM analysis. The PNIPAM-b-PS stars are amphiphilic and undergo self-assembly in water with formation of super-aggregates that exhibit strong green fluorescence. The P4VP stars lend themselves to further functionalization at the periphery.


Developmental Biology | 1990

Sea urchin spectrin in oogenesis and embryogenesis: A multifunctional integrator of membrane-cytoskeletal interactions

Douglas J. Fishkind; Edward M. Bonder; David A. Begg

Using indirect immunofluorescence microscopy on semithin cryosections of maturing ovarian tissue, eggs, and developing embryos, we have mapped the cellular distribution and dynamic redistribution of spectrin in oogenesis and early embryogenesis. During oogenesis, spectrin is initially found in the cortex of oogonia and previtellogenic oocytes, and later accumulates in the cytoplasm of vitellogenic oocytes on the surfaces of cortical granules, pigment granules/acidic vesicles, and yolk platelets. Following egg activation, spectrin undergoes a rapid redistribution coincident with three major developmental events including: (1) restructuring of the cell surface, (2) translocation of pigment granules/acidic vesicles to the cortex during the first cell cycle, and (3) amplification of the embryos surface during the rapid cleavage phase of early embryogenesis. The synthesis and storage of spectrin during oogenesis appears to prime the egg with a preestablished pool of membrane-cytoskeletal precursor for use during embryogenesis. Results from this study support the hypothesis that spectrin may function as a key integrator and modulator of multiple membrane-cytoskeletal functions during embryonic growth and cellular differentiation.

Collaboration


Dive into the Edward M. Bonder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gel'fand Im

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge