Edward M. Tilmont
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward M. Tilmont.
Nature | 2012
Julie A. Mattison; George S. Roth; T. Mark Beasley; Edward M. Tilmont; April M. Handy; Richard Herbert; Dan L. Longo; David B. Allison; Jennifer E. Young; Mark Bryant; Dennis Barnard; Walter F. Ward; Wenbo Qi; Donald K. Ingram; Rafael de Cabo
Calorie restriction (CR), a reduction of 10–40% in intake of a nutritious diet, is often reported as the most robust non-genetic mechanism to extend lifespan and healthspan. CR is frequently used as a tool to understand mechanisms behind ageing and age-associated diseases. In addition to and independently of increasing lifespan, CR has been reported to delay or prevent the occurrence of many chronic diseases in a variety of animals. Beneficial effects of CR on outcomes such as immune function, motor coordination and resistance to sarcopenia in rhesus monkeys have recently been reported. We report here that a CR regimen implemented in young and older age rhesus monkeys at the National Institute on Aging (NIA) has not improved survival outcomes. Our findings contrast with an ongoing study at the Wisconsin National Primate Research Center (WNPRC), which reported improved survival associated with 30% CR initiated in adult rhesus monkeys (7–14 years) and a preliminary report with a small number of CR monkeys. Over the years, both NIA and WNPRC have extensively documented beneficial health effects of CR in these two apparently parallel studies. The implications of the WNPRC findings were important as they extended CR findings beyond the laboratory rodent and to a long-lived primate. Our study suggests a separation between health effects, morbidity and mortality, and similar to what has been shown in rodents, study design, husbandry and diet composition may strongly affect the life-prolonging effect of CR in a long-lived nonhuman primate.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Navin Maswood; Jennifer E. Young; Edward M. Tilmont; Zhiming Zhang; Don M. Gash; Greg A. Gerhardt; Richard Grondin; George S. Roth; Julie A. Mattison; Mark A. Lane; Richard E. Carson; Robert M. Cohen; Peter R. Mouton; Christopher Quigley; Mark P. Mattson; Donald K. Ingram
We report that a low-calorie diet can lessen the severity of neurochemical deficits and motor dysfunction in a primate model of Parkinsons disease. Adult male rhesus monkeys were maintained for 6 months on a reduced-calorie diet [30% caloric restriction (CR)] or an ad libitum control diet after which they were subjected to treatment with a neurotoxin to produce a hemiparkinson condition. After neurotoxin treatment, CR monkeys exhibited significantly higher levels of locomotor activity compared with control monkeys as well as higher levels of dopamine (DA) and DA metabolites in the striatal region. Increased survival of DA neurons in the substantia nigra and improved manual dexterity were noted but did not reach statistical significance. Levels of glial cell line-derived neurotrophic factor, which is known to promote the survival of DA neurons, were increased significantly in the caudate nucleus of CR monkeys, suggesting a role for glial cell line-derived neurotrophic factor in the anti-Parkinsons disease effect of the low-calorie diet.
Cell Metabolism | 2013
Yolanda Jimenez-Gomez; Julie A. Mattison; Kevin J. Pearson; Alejandro Martin-Montalvo; Hector H. Palacios; Alex M. Sossong; Theresa M. Ward; Caitlin M. Younts; Kaitlyn N. Lewis; Joanne S. Allard; Dan L. Longo; Jonathan P. Belman; María M. Malagón; Plácido Navas; Mitesh Sanghvi; Ruin Moaddel; Edward M. Tilmont; Richard Herbert; Christopher H. Morrell; Josephine M. Egan; Joseph A. Baur; Luigi Ferrucci; Jonathan S. Bogan; Michel Bernier; Rafael de Cabo
Obesity is associated with a chronic, low-grade, systemic inflammation that may contribute to the development of insulin resistance and type 2 diabetes. Resveratrol, a natural compound with anti-inflammatory properties, is shown to improve glucose tolerance and insulin sensitivity in obese mice and humans. Here, we tested the effect of a 2-year resveratrol administration on proinflammatory profile and insulin resistance caused by a high-fat, high-sugar (HFS) diet in white adipose tissue (WAT) from rhesus monkeys. Resveratrol supplementation (80 and 480 mg/day for the first and second year, respectively) decreased adipocyte size, increased sirtuin 1 expression, decreased NF-κB activation, and improved insulin sensitivity in visceral, but not subcutaneous, WAT from HFS-fed animals. These effects were reproduced in 3T3-L1 adipocytes cultured in media supplemented with serum from monkeys fed HFS ± resveratrol diets. In conclusion, chronic administration of resveratrol exerts beneficial metabolic and inflammatory adaptations in visceral WAT from diet-induced obese monkeys.
Annals of the New York Academy of Sciences | 2006
Mark A. Lane; Angela Black; April M. Handy; Edward M. Tilmont; Donald K. Ingram; George S. Roth
Abstract: Caloric restriction (CR) remains the only nongenetic intervention that reproducibly extends mean and maximal life span in short‐lived mammalian species. This nutritional intervention also delays the onset, or slows the progression, of many age‐related disease processes. The diverse effects of CR have been demonstrated many hundreds of times in laboratory rodents and other short‐lived species, such as rotifers, water fleas, fish, spiders, and hamsters. Until recently, the effects of CR in longer‐lived species, more closely related to humans, remained unknown. Long‐term studies of aging in nonhuman primates undergoing CR have been underway at the National Institute on Aging (NIA) and the University of Wisconsin‐Madison (UW) for over a decade. A number of reports from the NIA and UW colonies have shown that monkeys on CR exhibit nearly identical physiological responses as reported in laboratory rodents. Studies of various markers related to age‐related diseases suggest that CR will prevent or delay the onset of cardiovascular disease, diabetes, and perhaps cancer, and preliminary data indicate that mortality due to these and other age‐associated diseases may also be reduced in monkeys on CR, compared to controls. Conclusive evidence showing that CR extends life span in primates is not presently available; however, the emerging data from the ongoing primate studies strengthens the possibility that the diverse beneficial effects of CR on aging in rodents will also apply to nonhuman primates and perhaps ultimately to humans.
Cell Metabolism | 2014
Julie A. Mattison; Mingyi Wang; Michel Bernier; Jing Zhang; Sung Soo Park; Stuart Maudsley; Steven S. An; Lakshmi Santhanam; Bronwen Martin; Shakeela Faulkner; Christopher H. Morrell; Joseph A. Baur; Leonid Peshkin; Danuta Sosnowska; Anna Csiszar; Richard Herbert; Edward M. Tilmont; Zoltan Ungvari; Kevin J. Pearson; Edward G. Lakatta; Rafael de Cabo
Central arterial wall stiffening, driven by a chronic inflammatory milieu, accompanies arterial diseases, the leading cause of cardiovascular (CV) morbidity and mortality in Western society. An increase in central arterial wall stiffening, measured as an increase in aortic pulse wave velocity (PWV), is a major risk factor for clinical CV disease events. However, no specific therapies to reduce PWV are presently available. In rhesus monkeys, a 2 year diet high in fat and sucrose (HFS) increases not only body weight and cholesterol, but also induces prominent central arterial wall stiffening and increases PWV and inflammation. The observed loss of endothelial cell integrity, lipid and macrophage infiltration, and calcification of the arterial wall were driven by genomic and proteomic signatures of oxidative stress and inflammation. Resveratrol prevented the HFS-induced arterial wall inflammation and the accompanying increase in PWV. Dietary resveratrol may hold promise as a therapy to ameliorate increases in PWV.
Mechanisms of Ageing and Development | 2000
Mark A. Lane; Edward M. Tilmont; Holly De Angelis; April M. Handy; Donald K. Ingram; Joseph W. Kemnitz; George S. Roth
Calorie restriction (CR) is widely known for its effects on life span, physiological aging and age-related disease in laboratory rats and mice. Emerging data from CR studies in rhesus monkeys suggest that this nutritional intervention paradigm may also have beneficial effects in long-lived mammals. Studies from our laboratory and others have suggested that young- or adult-onset CR might have beneficial effects on cardiovascular disease and diabetes. For example, long-term CR reduced body fat and serum triglycerides, and increased a subfraction of HDL cholesterol associated with decreased cardiovascular disease risk. These studies suggested that long-term CR begun in young or adult animals might have important effects on markers relevant to age-related disease. Few studies have examined the effects of CR initiated in older animals (rodents or monkeys), and the temporal nature of some potentially beneficial effects of CR is unknown. The present study examined several markers related to diabetes and cardiovascular disease in thirteen older adult (> 18 year) non-obese (body fat < 22%), male rhesus monkeys during a short-term CR paradigm. Specifically, we collected these data at baseline (ad libitum feeding), 10, 20, and 30% CR, and at 6 and 12 months on 30% CR. Fasting and peak insulin were significantly reduced as were the acute and second-phase insulin responses. CR also marginally reduced triglycerides (50% reduction), but had no effect on total serum cholesterol or blood pressure. Interestingly, the observed glucoregulatory changes emerged prior to any evidence of a change in body composition suggesting that certain effects of CR may not be wholly dependent on changes in body composition in older monkeys.
Bone | 2001
Angela Black; Edward M. Tilmont; April M. Handy; W.W Scott; Sue A. Shapses; Donald K. Ingram; George S. Roth; Mark A. Lane
Aging is associated with gradual bone loss in men and premenopausal women, with an accelerated rate of loss after menopause in women. Although many studies have investigated bone loss due to surgically induced estrogen depletion, little is known regarding normal age-related changes in bone mass in animal models. We used dual-energy X-ray absorptiometry (DXA) to measure bone mineral density (BMD), bone mineral content (BMC), and projected area (PA) at four skeletal sites over 4 years in 20 premenopausal female (8-23 years) and 29 male (8-27 years) rhesus monkeys (Macaca mulatta). Forearm BMD declined with age in both male and female monkeys. Lean mass was positively associated with BMD at all sites in males and with the distal radius in females. Serum osteocalcin declined and urinary cross-links increased with age in males but not females. Serum 25-hydroxyvitamin D concentrations decreased with age in females, and a similar trend was observed in males. In conclusion, an age-related decline in forearm BMD was observed in male and female rhesus monkeys. Total body BMC declined over time in older females, with a similar trend in males. Changes in markers of bone turnover with age were also observed in male monkeys. The results of this longitudinal study suggest that the rhesus monkey is a potential model for age-related changes in the human skeleton.
Neurobiology of Aging | 2005
Julie A. Mattison; Angela Black; Jennifer L. Huck; Tammy D. Moscrip; April M. Handy; Edward M. Tilmont; George S. Roth; Mark A. Lane; Donald K. Ingram
Human studies have documented age-related declines in caloric intake that are pronounced at advanced ages. We examined caloric intake from a longitudinal study of aging in 60 male and 60 female rhesus monkeys (Macaca mulatta) collected for up to 10 years. Monkeys were provided a standardized, nutritionally fortified diet during two daily meals, and intake was measured quarterly. About half of the monkeys were on a regimen of caloric restriction (CR) representing about a 30% reduction in caloric intake compared to controls (CON) of comparable age and body weight. CR was applied to determine if this nutritional intervention retards the rate of aging in monkeys similar to observations in other mammalian studies. Following reproductive maturity at 6 years of age, there was a consistent age-related decline in caloric intake in these monkeys. Although males had higher intake than females, and CON had higher intake compared to CR, the sex and diet differences converged at older ages (>20 years); thus, older CR monkeys were no longer consuming 30% less than the CON. When adjusted for body weight, an age-related decline in caloric intake was still evident; however, females had higher intake compared to males while CR monkeys still consumed less food, and again differences converged at older ages. Motivation for food was assessed in 65 of the monkeys following at least 8 years in their respective diet groups. Using an apparatus attached to the home cage, following an overnight fast, monkeys were trained to reach out of their cage to retrieve a biscuit of their diet by pushing open a clear plastic door on the apparatus. The door was then locked, and thus the biscuit was irretrievable. The time spent trying to retrieve the biscuit was recorded as a measure of motivation for food. We observed an age-related decline in this measure, but found no consistent differences in retrieval time between CR and CON groups of comparable age and time on diet. The results demonstrate an age-related decline in food intake and motivation for food in rhesus monkeys paralleling findings in humans; however, we found no evidence that monkeys on a long-term CR regimen were more motivated for food compared to CON. Examining the relationship of selected blood proteins to food intake following 7-11 years on the study, we found a negative correlation between globulin and intake among males and females after accounting for differences in age. In addition, a positive correlation was observed between leptin and intake in males.
Journal of Medical Primatology | 2001
Angela Black; Edward M. Tilmont; David J. Baer; William V. Rumpler; Donald K. Ingram; George S. Roth; Mark A. Lane
Accuracy of body composition measurements by dual‐energy X‐ray absorptiometry (DXA) was compared with direct chemical analysis in 10 adult rhesus monkeys. DXA was highly correlated (r‐values >0.95) with direct analyses of body fat mass (FM), lean mass (LM) and lumbar spine bone mineral content (BMC). DXA measurements of total body BMC were not as strongly correlated (r‐value=0.58) with total carcass ash content. DXA measurements of body FM, LM and lumbar spine BMC were not different from data obtained by direct analyses (P‐values >0.30). In contrast, DXA determinations of total BMC (TBMC) averaged 15% less than total carcass ash measurements (P=0.002). In conclusion, this study confirms the accurate measurement of fat and lean tissue mass by DXA in rhesus monkeys. DXA also accurately measured lumbar spine BMC but underestimated total body BMC as compared with carcass ash determinations.
Proceedings of the National Academy of Sciences of the United States of America | 1996
Mark A. Lane; D J Baer; W V Rumpler; Richard Weindruch; Donald K. Ingram; Edward M. Tilmont; Richard G. Cutler; George S. Roth