Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edward R. Brzostek is active.

Publication


Featured researches published by Edward R. Brzostek.


New Phytologist | 2013

The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests

Richard P. Phillips; Edward R. Brzostek; Meghan G. Midgley

Understanding the context dependence of ecosystem responses to global changes requires the development of new conceptual frameworks. Here we propose a framework for considering how tree species and their mycorrhizal associates differentially couple carbon (C) and nutrient cycles in temperate forests. Given that tree species predominantly associate with a single type of mycorrhizal fungi (arbuscular mycorrhizal (AM) fungi or ectomycorrhizal (ECM) fungi), and that the two types of fungi differ in their modes of nutrient acquisition, we hypothesize that the abundance of AM and ECM trees in a plot, stand, or region may provide an integrated index of biogeochemical transformations relevant to C cycling and nutrient retention. First, we describe how forest plots dominated by AM tree species have nutrient economies that differ in their C-nutrient couplings from those in plots dominated by ECM trees. Secondly, we demonstrate how the relative abundance of AM and ECM trees can be used to estimate nutrient dynamics across the landscape. Finally, we describe how our framework can be used to generate testable hypotheses about forest responses to global change factors, and how these dynamics can be used to develop better representations of plant-soil feedbacks and nutrient constraints on productivity in ecosystem and earth system models.


New Phytologist | 2014

Synthesis and modeling perspectives of rhizosphere priming.

Weixin Cheng; William J. Parton; Miquel A. Gonzalez-Meler; Richard P. Phillips; Shinichi Asao; Gordon G. McNickle; Edward R. Brzostek; Julie D. Jastrow

The rhizosphere priming effect (RPE) is a mechanism by which plants interact with soil functions. The large impact of the RPE on soil organic matter decomposition rates (from 50% reduction to 380% increase) warrants similar attention to that being paid to climatic controls on ecosystem functions. Furthermore, global increases in atmospheric CO2 concentration and surface temperature can significantly alter the RPE. Our analysis using a game theoretic model suggests that the RPE may have resulted from an evolutionarily stable mutualistic association between plants and rhizosphere microbes. Through model simulations based on microbial physiology, we demonstrate that a shift in microbial metabolic response to different substrate inputs from plants is a plausible mechanism leading to positive or negative RPEs. In a case study of the Duke Free-Air CO2 Enrichment experiment, performance of the PhotoCent model was significantly improved by including an RPE-induced 40% increase in soil organic matter decomposition rate for the elevated CO2 treatment--demonstrating the value of incorporating the RPE into future ecosystem models. Overall, the RPE is emerging as a crucial mechanism in terrestrial ecosystems, which awaits substantial research and model development.


Global Change Biology | 2015

Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles

Adrien C. Finzi; Rose Z. Abramoff; Kimberly S. Spiller; Edward R. Brzostek; Bridget A. Darby; Mark A. Kramer; Richard P. Phillips

While there is an emerging view that roots and their associated microbes actively alter resource availability and soil organic matter (SOM) decomposition, the ecosystem consequences of such rhizosphere effects have rarely been quantified. Using a meta-analysis, we show that multiple indices of microbially mediated C and nitrogen (N) cycling, including SOM decomposition, are significantly enhanced in the rhizospheres of diverse vegetation types. Then, using a numerical model that combines rhizosphere effect sizes with fine root morphology and depth distributions, we show that root-accelerated mineralization and priming can account for up to one-third of the total C and N mineralized in temperate forest soils. Finally, using a stoichiometrically constrained microbial decomposition model, we show that these effects can be induced by relatively modest fluxes of root-derived C, on the order of 4% and 6% of gross and net primary production, respectively. Collectively, our results indicate that rhizosphere processes are a widespread, quantitatively important driver of SOM decomposition and nutrient release at the ecosystem scale, with potential consequences for global C stocks and vegetation feedbacks to climate.


Biogeochemistry | 2014

Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests

Scott V. Ollinger; Mary E. Martin; Richard D. Bowden; Edward R. Brzostek; Andrew J. Burton; Bruce A. Caldwell; Kate Lajtha; Susan E. Crow

The terrestrial biosphere sequesters up to a third of annual anthropogenic carbon dioxide emissions, offsetting a substantial portion of greenhouse gas forcing of the climate system. Although a number of factors are responsible for this terrestrial carbon sink, atmospheric nitrogen deposition contributes by enhancing tree productivity and promoting carbon storage in tree biomass. Forest soils also represent an important, but understudied carbon sink. Here, we examine the contribution of trees versus soil to total ecosystem carbon storage in a temperate forest and investigate the mechanisms by which soils accumulate carbon in response to two decades of elevated nitrogen inputs. We find that nitrogen-induced soil carbon accumulation is of equal or greater magnitude to carbon stored in trees, with the degree of response being dependent on stand type (hardwood versus pine) and level of N addition. Nitrogen enrichment resulted in a shift in organic matter chemistry and the microbial community such that unfertilized soils had a higher relative abundance of fungi and lipid, phenolic, and N-bearing compounds; whereas, N-amended plots were associated with reduced fungal biomass and activity and higher rates of lignin accumulation. We conclude that soil carbon accumulation in response to N enrichment was largely due to a suppression of organic matter decomposition rather than enhanced carbon inputs to soil via litter fall and root production.


Ecology | 2011

Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils

Edward R. Brzostek; Adrien C. Finzi

Temperature and substrate availability constrain the activity of the extracellular enzymes that decompose and release nutrients from soil organic matter (SOM). Proteolytic enzymes are the primary class of enzymes involved in the depolymerization of nitrogen (N) from proteinaceous components of SOM, and their activity affects the rate of N cycling in forest soils. The objectives of this study were to determine whether and how temperature and substrate availability affect the activity of proteolytic enzymes in temperate forest soils, and whether the activity of proteolytic enzymes and other enzymes involved in the acquisition of N (i.e., chitinolytic and ligninolytic enzymes) differs between trees species that form associations with either ectomycorrhizal or arbuscular mycorrhizal fungi. Temperature limitation of proteolytic enzyme activity was observed only early in the growing season when soil temperatures in the field were near 4 degrees C. Substrate limitation to proteolytic activity persisted well into the growing season. Ligninolytic enzyme activity was higher in soils dominated by ectomycorrhizal associated tree species. In contrast, the activity of proteolytic and chitinolytic enzymes did not differ, but there were differences between mycorrhizal association in the control of roots on enzyme activity. Roots of ectomycorrhizal species but not those of arbuscular mycorrhizal species exerted significant control over proteolytic, chitinolytic, and ligninolytic enzyme activity; the absence of ectomycorrhizal fine roots reduced the activity of all three enzymes. These results suggest that climate warming in the absence of increases in substrate availability may have a modest effect on soil-N cycling, and that global changes that alter belowground carbon allocation by trees are likely to have a larger effect on nitrogen cycling in stands dominated by ectomycorrhizal fungi.


Ecological Applications | 2015

Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy‐scale photosynthesis

Michael Toomey; Mark A. Friedl; Steve Frolking; Koen Hufkens; Stephen Klosterman; Oliver Sonnentag; Dennis D. Baldocchi; Carl J. Bernacchi; Sebastien Biraud; Gil Bohrer; Edward R. Brzostek; Sean P. Burns; Carole Coursolle; David Y. Hollinger; Hank A. Margolis; Harry McCaughey; Russell K. Monson; J. William Munger; Stephen G. Pallardy; Richard P. Phillips; Margaret S. Torn; Sonia Wharton; Marcelo Zeri; Andrew D. Richardson

The proliferation of digital cameras co-located with eddy covariance instrumentation provides new opportunities to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of canopy color metrics measured by digital repeat photography to track seasonal canopy development and photosynthesis, determine phenological transition dates, and estimate intra-annual and interannual variability in canopy photosynthesis. We used 59 site-years of camera imagery and net ecosystem exchange measurements from 17 towers spanning three plant functional types (deciduous broadleaf forest, evergreen needleleaf forest, and grassland/crops) to derive color indices and estimate gross primary productivity (GPP). GPP was strongly correlated with greenness derived from camera imagery in all three plant functional types. Specifically, the beginning of the photosynthetic period in deciduous broadleaf forest and grassland/crops and the end of the photosynthetic period in grassland/crops were both correlated with changes in greenness; changes in redness were correlated with the end of the photosynthetic period in deciduous broadleaf forest. However, it was not possible to accurately identify the beginning or ending of the photosynthetic period using camera greenness in evergreen needleleaf forest. At deciduous broadleaf sites, anomalies in integrated greenness and total GPP were significantly correlated up to 60 days after the mean onset date for the start of spring. More generally, results from this work demonstrate that digital repeat photography can be used to quantify both the duration of the photosynthetically active period as well as total GPP in deciduous broadleaf forest and grassland/crops, but that new and different approaches are required before comparable results can be achieved in evergreen needleleaf forest.


New Phytologist | 2015

Mycorrhizal type determines the magnitude and direction of root‐induced changes in decomposition in a temperate forest

Edward R. Brzostek; Danilo Dragoni; Zachary A. Brown; Richard P. Phillips

Although it is increasingly being recognized that roots play a key role in soil carbon (C) dynamics, the magnitude and direction of these effects are unknown. Roots can accelerate soil C losses by provisioning microbes with energy to decompose organic matter or impede soil C losses by enhancing microbial competition for nutrients. We experimentally reduced belowground C supply to soils via tree girdling, and contrasted responses in control and girdled plots for three consecutive growing seasons. We hypothesized that decreases in belowground C supply would have stronger effects in plots dominated by ectomycorrhizal (ECM) trees rather than arbuscular mycorrhizal (AM) trees. In ECM-dominated plots, girdling decreased the activity of enzymes that break down soil organic matter (SOM) by c. 40%, indicating that, in control plots, C supply from ECM roots primes microbial decomposition. In AM-dominated plots, girdling had little effect on SOM-degrading enzymes, but increased the decomposition of AM leaf litter by c. 43%, suggesting that, in control plots, AM roots may intensify microbial competition for nutrients. Our findings indicate that root-induced changes in soil processes depend on forest composition, and that shifts in the distribution of AM and ECM trees owing to climate change may determine soil C gains and losses.


Journal of Geophysical Research | 2014

Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade‐offs and multipath resistance uptake improve predictions of retranslocation

Edward R. Brzostek; Joshua B. Fisher; Richard P. Phillips

Accurate projections of the future land carbon (C) sink by terrestrial biosphere models depend on how nutrient constraints on net primary production are represented. While nutrient limitation is nearly universal, current models do not have a C cost for plant nutrient acquisition. Also missing are symbiotic mycorrhizal fungi, which can consume up to 20% of net primary production and supply up to 50% of a plants nitrogen (N) uptake. Here we integrate simultaneous uptake and mycorrhizae into a cutting-edge plant N model—Fixation and Uptake of Nitrogen (FUN)—that can be coupled into terrestrial biosphere models. The C cost of N acquisition varies as a function of mycorrhizal type, with plants that support arbuscular mycorrhizae benefiting when N is relatively abundant and plants that support ectomycorrhizae benefiting when N is strongly limiting. Across six temperate forested sites (representing arbuscular mycorrhizal- and ectomycorrhizal-dominated stands and 176 site years), including multipath resistance improved the partitioning of N uptake between aboveground and belowground sources. Integrating mycorrhizae led to further improvements in predictions of N uptake from soil (R2 = 0.69 increased to R2 = 0.96) and from senescing leaves (R2 = 0.29 increased to R2 = 0.73) relative to the original model. On average, 5% and 9% of net primary production in arbuscular mycorrhizal- and ectomycorrhizal-dominated forests, respectively, was needed to support mycorrhizal-mediated acquisition of N. To the extent that resource constraints to net primary production are governed by similar trade-offs across all terrestrial ecosystems, integrating these improvements to FUN into terrestrial biosphere models should enhance predictions of the future land C sink.


Reviews of Geophysics | 2014

Toward a better integration of biological data from precipitation manipulation experiments into Earth system models

Nicholas G. Smith; Vikki L. Rodgers; Edward R. Brzostek; Andrew Kulmatiski; Meghan L. Avolio; David L. Hoover; Sally E. Koerner; Kerstin Grant; Anke Jentsch; Simone Fatichi; Dev Niyogi

The biological responses to precipitation within the terrestrial components of Earth system models, or land surface models (LSMs), are mechanistically simple and poorly constrained, leaving projections of terrestrial ecosystem functioning and feedbacks to climate change uncertain. A number of field experiments have been conducted or are underway to test how changing precipitation will affect terrestrial ecosystems. Results from these experiments have the potential to vastly improve modeled processes. However, the transformation of experimental results into model improvements still represents a grand challenge. Here we review the current state of precipitation manipulation experiments and the precipitation responses of biological processes in LSMs to explore how these experiments can help improve model realism. First, we discuss contemporary precipitation projections and then review the structure and function of current-generation LSMs. We then examine different experimental designs and discuss basic variables that, if measured, would increase a field experiments usefulness in a modeling context. Next, we compare biological processes commonly measured in the field with their model analogs and find that, in many cases, the way these processes are measured in the field is not compatible with the way they are represented in LSMs, an effect that hinders model development. We then discuss the challenge of scaling from the plot to the globe. Finally, we provide a series of recommendations aimed to improve the connectivity between experiments and LSMs and conclude that studies designed from the perspective of researchers in both communities will provide the greatest benefit to the broader global change community.


New Phytologist | 2015

The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2

Ina C. Meier; Seth G. Pritchard; Edward R. Brzostek; M. Luke McCormack; Richard P. Phillips

While multiple experiments have demonstrated that trees exposed to elevated CO₂ can stimulate microbes to release nutrients from soil organic matter, the importance of root- versus mycorrhizal-induced changes in soil processes are presently unknown. We analyzed the contribution of roots and mycorrhizal activities to carbon (C) and nitrogen (N) turnover in a loblolly pine (Pinus taeda) forest exposed to elevated CO₂ by measuring extracellular enzyme activities at soil microsites accessed via root windows. Specifically, we quantified enzyme activity from soil adjacent to root tips (rhizosphere), soil adjacent to hyphal tips (hyphosphere), and bulk soil. During the peak growing season, CO₂ enrichment induced a greater increase of N-releasing enzymes in the rhizosphere (215% increase) than in the hyphosphere (36% increase), but a greater increase of recalcitrant C-degrading enzymes in the hyphosphere (118%) than in the rhizosphere (19%). Nitrogen fertilization influenced the magnitude of CO₂ effects on enzyme activities in the rhizosphere only. At the ecosystem scale, the rhizosphere accounted for c. 50% and 40% of the total activity of N- and C-releasing enzymes, respectively. Collectively, our results suggest that root exudates may contribute more to accelerated N cycling under elevated CO₂ at this site, while mycorrhizal fungi may contribute more to soil C degradation.

Collaboration


Dive into the Edward R. Brzostek's collaboration.

Top Co-Authors

Avatar

Richard P. Phillips

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danilo Dragoni

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge