Edward S. Allgeyer
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edward S. Allgeyer.
eLife | 2014
Florian Wilfling; Abdou Rachid Thiam; Maria-Jesus Olarte; Jing Wang; Rainer Beck; Travis J. Gould; Edward S. Allgeyer; Frédéric Pincet; Joerg Bewersdorf; Robert V. Farese; Tobias C. Walther
Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids, such as triacylglycerol (TG), as reservoirs of metabolic energy and membrane precursors. The Arf1/COPI protein machinery, known for its role in vesicle trafficking, regulates LD morphology, targeting of specific proteins to LDs and lipolysis through unclear mechanisms. Recent evidence shows that Arf1/COPI can bud nano-LDs (∼60 nm diameter) from phospholipid-covered oil/water interfaces in vitro. We show that Arf1/COPI proteins localize to cellular LDs, are sufficient to bud nano-LDs from cellular LDs, and are required for targeting specific TG-synthesis enzymes to LD surfaces. Cells lacking Arf1/COPI function have increased amounts of phospholipids on LDs, resulting in decreased LD surface tension and impairment to form bridges to the ER. Our findings uncover a function for Arf1/COPI proteins at LDs and suggest a model in which Arf1/COPI machinery acts to control ER-LD connections for localization of key enzymes of TG storage and catabolism. DOI: http://dx.doi.org/10.7554/eLife.01607.001
Cell | 2016
Fang Huang; George Sirinakis; Edward S. Allgeyer; Lena K. Schroeder; Whitney C. Duim; Emil B. Kromann; Thomy Phan; Felix Rivera-Molina; Jordan R. Myers; Irnov Irnov; Mark Lessard; Yongdeng Zhang; Mary Ann Handel; Christine Jacobs-Wagner; C. Patrick Lusk; Derek Toomre; Martin J. Booth; Joerg Bewersdorf
Summary Fluorescence nanoscopy, or super-resolution microscopy, has become an important tool in cell biological research. However, because of its usually inferior resolution in the depth direction (50–80 nm) and rapidly deteriorating resolution in thick samples, its practical biological application has been effectively limited to two dimensions and thin samples. Here, we present the development of whole-cell 4Pi single-molecule switching nanoscopy (W-4PiSMSN), an optical nanoscope that allows imaging of three-dimensional (3D) structures at 10- to 20-nm resolution throughout entire mammalian cells. We demonstrate the wide applicability of W-4PiSMSN across diverse research fields by imaging complex molecular architectures ranging from bacteriophages to nuclear pores, cilia, and synaptonemal complexes in large 3D cellular volumes.
Nature Communications | 2016
Francesca Bottanelli; Emil B. Kromann; Edward S. Allgeyer; Roman S. Erdmann; Stephanie Wood Baguley; George Sirinakis; Alanna Schepartz; David Baddeley; Derek Toomre; Joerg Bewersdorf
Stimulated emission depletion (STED) nanoscopy allows observations of subcellular dynamics at the nanoscale. Applications have, however, been severely limited by the lack of a versatile STED-compatible two-colour labelling strategy for intracellular targets in living cells. Here we demonstrate a universal labelling method based on the organic, membrane-permeable dyes SiR and ATTO590 as Halo and SNAP substrates. SiR and ATTO590 constitute the first suitable dye pair for two-colour STED imaging in living cells below 50 nm resolution. We show applications with mitochondria, endoplasmic reticulum, plasma membrane and Golgi-localized proteins, and demonstrate continuous acquisition for up to 3 min at 2-s time resolution.
PLOS ONE | 2014
Maria Jimena Amaya; André G. Oliveira; Lena K. Schroeder; Edward S. Allgeyer; Joerg Bewersdorf; Michael H. Nathanson
Extended synaptotagmins (E-Syts) are a recently identified family of proteins that tether the endoplasmic reticulum (ER) to the plasma membrane (PM) in part by conferring regulation of cytosolic calcium (Ca2+) at these contact sites (Cell, 2013). However, the mechanism by which E-Syts link this tethering to Ca2+ signaling is unknown. Ca2+ waves in polarized epithelia are initiated by inositol 1,4,5-trisphosphate receptors (InsP3Rs), and these waves begin in the apical region because InsP3Rs are targeted to the ER adjacent to the apical membrane. In this study we investigated whether E-Syts are responsible for this targeting. Primary rat hepatocytes were used as a model system, because a single InsP3R isoform (InsP3R-II) is tethered to the peri-apical ER in these cells. Additionally, it has been established in hepatocytes that the apical localization of InsP3Rs is responsible for Ca2+ waves and secretion and is disrupted in disease states in which secretion is impaired. We found that rat hepatocytes express two of the three identified E-Syts (E-Syt1 and E-Syt2). Individual or simultaneous siRNA knockdown of these proteins did not alter InsP3R-II expression levels, apical localization or average InsP3R-II cluster size. Moreover, apical secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was not changed in cells lacking E-Syts but was reduced in cells in which cytosolic Ca2+ was buffered. These data provide evidence that E-Syts do not participate in the targeting of InsP3Rs to the apical region. Identifying tethers that bring InsP3Rs to the apical region remains an important question, since mis-targeting of InsP3Rs leads to impaired secretory activity.
Optics Express | 2017
Xiang Hao; Jacopo Antonello; Edward S. Allgeyer; Joerg Bewersdorf; Martin J. Booth
The combination of two opposing objective lenses in 4Pi fluorescence microscopy significantly improves the axial resolution and increases the collection efficiency. Combining 4Pi microscopy with other super-resolution techniques has resulted in the highest three-dimensional (3D) resolution in fluorescence microscopy to date. It has previously been shown that the performance of 4Pi microscopy is significantly affected by aberrations. However, a comprehensive description of 4Pi microscope aberrations has been missing. In this paper, we introduce an approach to describe aberrations in a 4Pi cavity through a new functional representation. We discuss the focusing properties of 4Pi systems affected by aberrations and discuss the implications for adaptive optics schemes for 4Pi microscopes based on this new insight.
Optics Letters | 2015
Xiang Hao; Edward S. Allgeyer; Martin J. Booth; Joerg Bewersdorf
IsoSTED nanoscopy, a variant of stimulated emission depletion (STED) microscopy, utilizes two opposing objective lenses and features the highest three-dimensional resolution of STED nanoscopes currently available. However, this technique is limited by axially repetitive side minima in the interference pattern of the depletion point-spread function (PSF), which can lead to ghost images. Here, we describe novel strategies to further improve the performance of isoSTED nanoscopy by reshaping the PSF. In particular, we propose employing moderate defocus on the depletion beam to reduce the side minima. Furthermore, we demonstrate a simplified alternative based on objective misalignment and quantitatively compare the expected performance between the two approaches.
Optics Letters | 2015
Mary Grace M. Velasco; Edward S. Allgeyer; Peng Yuan; Jaime Grutzendler; Joerg Bewersdorf
Efficient use of two-photon excitation (TPE) microscopy requires knowledge of the absolute TPE action cross sections (ATACSs) of fluorescent probes. However, these values are not available for recently developed dyes, which exhibit superior properties in many modern microscopy applications. We report ATACSs of five red to far-red organic dyes, ATTO 647N, STAR 635P, silicon rhodamine, ATTO 594, and ATTO 590. The dyes were found to have large ATACSs (>100 GM) at their respective wavelength peaks, thus supporting their use as bright fluorescent markers in TPE microscopy.
FEBS Letters | 2016
Julia Dancourt; Hong Zheng; Francesca Bottanelli; Edward S. Allgeyer; Joerg Bewersdorf; Morven Graham; Xinran Liu; Grégory Lavieu
How are proteins transported across the stacked cisternae of the Golgi apparatus? Do they stay within the cisterna while the latter matures and progresses in an anterograde manner, or do they navigate between the cisternae via vesicles? Using synthetic biology, we engineered new tools designed to stabilize intercisternal adhesion such that Golgi cisternae are literally glued together, thus preventing any possible cisternal progression. Using bulk secretory assays and single‐cell live imaging, we observed that small cargoes (but not large aggregated cargoes including collagen) still transited through glued Golgi, although the rate of transport was moderately reduced. ARF1, whose membrane recruitment is required for budding COPI vesicles, continues to cycle on and off glued Golgi. Numerous COPI‐size vesicles were intercalated among the glued Golgi cisternae. These results suggest that cisternal progression is not required for anterograde transport, but do not address the possibility of cisternal maturation in situ.
Adaptive Optics and Wavefront Control for Biological Systems IV | 2018
Jacopo Antonello; Xiang Hao; Edward S. Allgeyer; Joerg Bewersdorf; Jens Rittscher; Martin J. Booth
The presence of aberrations is a major concern when using fluorescence microscopy to image deep inside tissue. Aberrations due to refractive index mismatch and heterogeneity of the specimen under investigation cause severe reduction in the amount of fluorescence emission that is collected by the microscope. Furthermore, aberrations adversely affect the resolution, leading to loss of fine detail in the acquired images. These phenomena are particularly troublesome for super-resolution microscopy techniques such as isotropic stimulated-emission-depletion microscopy (isoSTED), which relies on accurate control of the shape and co-alignment of multiple excitation and depletion foci to operate as expected and to achieve the super-resolution effect. Aberrations can be suppressed by implementing sensorless adaptive optics techniques, whereby aberration correction is achieved by maximising a certain image quality metric. In confocal microscopy for example, one can employ the total image brightness as an image quality metric. Aberration correction is subsequently achieved by iteratively changing the settings of a wavefront corrector device until the metric is maximised. This simplistic approach has limited applicability to isoSTED microscopy where, due to the complex interplay between the excitation and depletion foci, maximising the total image brightness can lead to introducing aberrations in the depletion foci. In this work we first consider the effects that different aberration modes have on isoSTED microscopes. We then propose an iterative, wavelet-based aberration correction algorithm and evaluate its benefits.
Proceedings of SPIE | 2016
Xiang Hao; Edward S. Allgeyer; Mary Grace M. Velasco; Martin J. Booth; Joerg Bewersdorf
The development of fluorescence microscopy, which allows live-cell imaging with high labeling specificity, has made the visualization of cellular architecture routine. However, for centuries, the spatial resolution of optical microscopy was fundamentally limited by diffraction. The past two decades have seen a revolution in far-field optical nanoscopy (or “super-resolution” microscopy). The best 3D resolution is achieved by optical nanoscopes like the isoSTED or the iPALM/4Pi-SMS, which utilize two opposing objective lenses in a coherent manner. These system are, however, also more complex and the required interference conditions demand precise aberration control. Our research involves developing novel adaptive optics techniques that enable high spatial and temporal resolution imaging for biological applications. In this talk, we will discuss how adaptive optics can enhance dual-objective lens nanoscopes. We will demonstrate how adaptive optics devices provide unprecedented freedom to manipulate the light field in isoSTED nanoscopy, allow to realize automatic beam alignment, suppress the inherent side-lobes of the point-spread function, and dynamically compensate for sample-induced aberrations. We will present both the theoretical groundwork and the experimental confirmations.