Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Efe Sezgin is active.

Publication


Featured researches published by Efe Sezgin.


Journal of The American Society of Nephrology | 2015

APOL1 Risk Variants Are Strongly Associated with HIV-Associated Nephropathy in Black South Africans

Alex N. Kasembeli; Raquel Duarte; Michèle Ramsay; Pulane Mosiane; Caroline Dickens; Therese Dix-Peek; Sophie Limou; Efe Sezgin; George W. Nelson; Agnes B. Fogo; Stewart Goetsch; Jeffrey B. Kopp; Cheryl A. Winkler; Saraladevi Naicker

APOL1 variants are associated with HIV-associated nephropathy and FSGS in African Americans. The prevalence of these variants in African populations with CKD in HIV-1 infection has not been investigated. We determined the role of APOL1 variants in 120 patients with HIV-associated nephropathy and CKD and 108 controls from a South-African black population. Patients with CKD were selected on the basis of histology. Genotypes were successfully determined for APOL1 G1 and G2 variants and 42 single nucleotide polymorphisms, including 18 ancestry informative markers, for 116 patients with CKD (96.7%; 38 patients with HIV-associated nephropathy, 39 patients with HIV-positive CKD, and 39 patients with HIV-negative CKD), and 108 controls (100%). Overall, 79% of patients with HIV-associated nephropathy and 2% of population controls carried two risk alleles. In a recessive model, individuals carrying any combination of two APOL1 risk alleles had 89-fold higher odds (95% confidence interval, 18 to 912; P<0.001) of developing HIV-associated nephropathy compared with HIV-positive controls. Population allele frequencies were 7.3% for G1 and 11.1% for G2. APOL1 risk alleles were not significantly associated with other forms of CKD. These results indicate HIV-positive, antiretroviral therapy-naïve South-African blacks with two APOL1 risk alleles are at very high risk for developing HIV-associated nephropathy. Further studies are required to determine the effect of APOL1 risk variants on kidney diseases in other regions of sub-Saharan Africa.


AIDS | 2008

Mitochondrial DNA Haplogroups Influence AIDS Progression

Sher L. Hendrickson; Holli Hutcheson; Eduardo Ruiz-Pesini; Jason C. Poole; James A. Lautenberger; Efe Sezgin; Lawrence A. Kingsley; James J. Goedert; David Vlahov; Sharyne Donfield; Douglas C. Wallace; Stephen J. O'Brien

Objective:Mitochondrial function plays a role in both AIDS progression and HAART toxicity; therefore, we sought to determine whether mitochondrial DNA variation revealed novel AIDS restriction genes, particularly as mitochondrial DNA single-nucleotide polymorphisms are known to influence regulation of oxidative phosphorylation, reactive oxygen species production, and apoptosis. Design:This is a retrospective cohort study. Methods:We performed an association study of mitochondrial DNA haplogroups among 1833 European American HIV-1 patients from five US cohorts: the Multicenter AIDS Cohort Study, the San Francisco City Clinic Study, Hemophilia Growth and Development Study, the Multicenter Hemophilia Cohort Study, and the AIDS Linked to Intravenous Experiences cohort to determine whether the mitochondrial DNA haplogroup correlated with AIDS progression rate. Results:Mitochondrial DNA haplogroups J and U5a were elevated among HIV-1 infected people who display accelerated progression to AIDS and death. Haplogroups Uk, H3, and IWX appeared to be highly protective against AIDS progression. Conclusion:The associations found in our study appear to support a functional explanation by which mitochondrial DNA variation among haplogroups, influencing ATP production, reactive oxygen species generation, and apoptosis, is correlated to AIDS disease progression; however, repeating these results in cohorts with different ethnic backgrounds would be informative. These data suggest that mitochondrial genes are important indicators of AIDS disease progression in HIV-1 infected persons.


PLOS Genetics | 2012

The Principal Genetic Determinants for Nasopharyngeal Carcinoma in China Involve the HLA Class I Antigen Recognition Groove

Minzhong Tang; James A. Lautenberger; Xiaojiang Gao; Efe Sezgin; Sher L. Hendrickson; Jennifer L. Troyer; Victor A. David; Li Guan; Carl McIntosh; Xiuchan Guo; Yuming Zheng; Jian Liao; Hong Deng; Michael Malasky; Bailey Kessing; Cheryl A. Winkler; Mary Carrington; Yi Zeng; Stephen J. O'Brien

Nasopharyngeal carcinoma (NPC) is an epithelial malignancy facilitated by Epstein-Barr Virus infection. Here we resolve the major genetic influences for NPC incidence using a genome-wide association study (GWAS), independent cohort replication, and high-resolution molecular HLA class I gene typing including 4,055 study participants from the Guangxi Zhuang Autonomous Region and Guangdong province of southern China. We detect and replicate strong association signals involving SNPs, HLA alleles, and amino acid (aa) variants across the major histocompatibility complex-HLA-A, HLA –B, and HLA -C class I genes (PHLA-A-aa-site-62 = 7.4×10−29; P HLA-B-aa-site-116 = 6.5×10−19; P HLA-C-aa-site-156 = 6.8×10−8 respectively). Over 250 NPC-HLA associated variants within HLA were analyzed in concert to resolve separate and largely independent HLA-A, -B, and -C gene influences. Multivariate logistical regression analysis collapsed significant associations in adjacent genes spanning 500 kb (OR2H1, GABBR1, HLA-F, and HCG9) as proxies for peptide binding motifs carried by HLA- A*11:01. A similar analysis resolved an independent association signal driven by HLA-B*13:01, B*38:02, and B*55:02 alleles together. NPC resistance alleles carrying the strongly associated amino acid variants implicate specific class I peptide recognition motifs in HLA-A and -B peptide binding groove as conferring strong genetic influence on the development of NPC in China.


The Journal of Infectious Diseases | 2011

Genome-Wide Association Study Implicates PARD3B-Based AIDS Restriction

Jennifer L. Troyer; George W. Nelson; James A. Lautenberger; Leslie W. Chinn; Carl McIntosh; Randall C. Johnson; Efe Sezgin; Bailey Kessing; Michael Malasky; Sher L. Hendrickson; Guan Li; Joan Pontius; Minzhong Tang; Ping An; Cheryl A. Winkler; Sophie Limou; Sigrid Le Clerc; Olivier Delaneau; Jean F. Zagury; Hanneke Schuitemaker; Daniëlle van Manen; Jay H. Bream; Edward D. Gomperts; Susan Buchbinder; James J. Goedert; Gregory D. Kirk; Stephen J. O'Brien

BACKGROUND Host genetic variation influences human immunodeficiency virus (HIV) infection and progression to AIDS. Here we used clinically well-characterized subjects from 5 pretreatment HIV/AIDS cohorts for a genome-wide association study to identify gene associations with rate of AIDS progression. METHODS European American HIV seroconverters (n = 755) were interrogated for single-nucleotide polymorphisms (SNPs) (n = 700,022) associated with progression to AIDS 1987 (Cox proportional hazards regression analysis, co-dominant model). RESULTS Association with slower progression was observed for SNPs in the gene PARD3B. One of these, rs11884476, reached genome-wide significance (relative hazard = 0.3; P =3. 370 × 10(-9)) after statistical correction for 700,022 SNPs and contributes 4.52% of the overall variance in AIDS progression in this study. Nine of the top-ranked SNPs define a PARD3B haplotype that also displays significant association with progression to AIDS (hazard ratio, 0.3; P = 3.220 × 10(-8)). One of these SNPs, rs10185378, is a predicted exonic splicing enhancer; significant alteration in the expression profile of PARD3B splicing transcripts was observed in B cell lines with alternate rs10185378 genotypes. This SNP was typed in European cohorts of rapid progressors and was found to be protective for AIDS 1993 definition (odds ratio, 0.43, P = .025). CONCLUSIONS These observations suggest a potential unsuspected pathway of host genetic influence on the dynamics of AIDS progression.


PLOS ONE | 2010

Genetic Variants in Nuclear-Encoded Mitochondrial Genes Influence AIDS Progression

Sher L. Hendrickson; James A. Lautenberger; Leslie W. Chinn; Michael Malasky; Efe Sezgin; Lawrence A. Kingsley; James J. Goedert; Gregory D. Kirk; Edward D. Gomperts; Susan Buchbinder; Jennifer L. Troyer; Stephen J. O'Brien

Background The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression. Methodology/Principal Findings Here we explore whether single nucleotide polymorphisms (SNPs) within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs) influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4) on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI) on chromosome 6. Conclusions Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.


Genetics | 2009

Quantifying Interactions Within the NADP(H) Enzyme Network in Drosophila melanogaster

Thomas J. S. Merritt; Caitlin A. Kuczynski; Efe Sezgin; Chen Tseh Zhu; Seiji Kumagai; Walter F. Eanes

In this report, we use synthetic, activity-variant alleles in Drosophila melanogaster to quantify interactions across the enzyme network that reduces nicotinamide adenine dinucleotide phosphate (NADP) to NADPH. We examine the effects of large-scale variation in isocitrate dehydrogenase (IDH) or glucose-6-phosphate dehydrogenase (G6PD) activity in a single genetic background and of smaller-scale variation in IDH, G6PD, and malic enzyme across 10 different genetic backgrounds. We find significant interactions among all three enzymes in adults; changes in the activity of any one source of a reduced cofactor generally result in changes in the other two, although the magnitude and directionality of change differs depending on the gene and the genetic background. Observed interactions are presumably through cellular mechanisms that maintain a homeostatic balance of NADPH/NADP, and the magnitude of change in response to modification of one source of reduced cofactor likely reflects the relative contribution of that enzyme to the cofactor pool. Our results suggest that malic enzyme makes the largest single contribution to the NADPH pool, consistent with the results from earlier experiments in larval D. melanogaster using naturally occurring alleles. The interactions between all three enzymes indicate functional interdependence and underscore the importance of examining enzymes as components of a network.


The Journal of Infectious Diseases | 2012

Multicohort Genomewide Association Study Reveals a New Signal of Protection Against HIV-1 Acquisition

Sophie Limou; Olivier Delaneau; Daniëlle van Manen; Ping An; Efe Sezgin; Sigrid Le Clerc; Cédric Coulonges; Jennifer L. Troyer; Jan H. Veldink; Leonard H. van den Berg; Jean-Louis Spadoni; Lieng Taing; Taoufik Labib; Matthieu Montes; Jean-François Delfraissy; François Schächter; Stephen J. O’Brien; Susan Buchbinder; Mark L. Van Natta; Douglas A. Jabs; Philippe Froguel; Hanneke Schuitemaker; Cheryl A. Winkler; Jean-François Zagury

BACKGROUND To date, only mutations in CCR5 have been shown to confer resistance to human immunodeficiency virus type 1 (HIV-1) infection, and these explain only a small fraction of the observed variability in HIV susceptibility. METHODS We performed a meta-analysis between 2 independent European genomewide association studies, each comparing HIV-1 seropositive cases with normal population controls known to be HIV uninfected, to identify single-nucleotide polymorphisms (SNPs) associated with the HIV-1 acquisition phenotype. SNPs exhibiting P < 10(-5) in this first stage underwent second-stage analysis in 2 independent US cohorts of European descent. RESULTS After the first stage, a single highly significant association was revealed for the chromosome 8 rs6996198 with HIV-1 acquisition and was replicated in both second-stage cohorts. Across the 4 groups, the rs6996198-T allele was consistently associated with a significant reduced risk of HIV-1 infection, and the global meta-analysis reached genomewide significance: P(combined) = 7.76 × 10(-8). CONCLUSIONS We provide strong evidence of association for a common variant with HIV-1 acquisition in populations of European ancestry. This protective signal against HIV-1 infection is the first identified outside the CCR5 nexus. First clues point to a potential functional role for a nearby candidate gene, CYP7B1, but this locus warrants further investigation.


Human Genetics | 2009

Association of Y Chromosome Haplogroup I with HIV Progression, and HAART Outcome

Efe Sezgin; Joanne M. Lind; Sadeep Shrestha; Sher L. Hendrickson; James J. Goedert; Sharyne Donfield; Gregory D. Kirk; John P. Phair; Jennifer L. Troyer; Stephen J. O'Brien; Michael W. Smith

The host genetic basis of differential outcomes in HIV infection, progression, viral load set point and highly active retroviral therapy (HAART) responses was examined for the common Y haplogroups in European Americans and African Americans. Accelerated progression to acquired immune deficiency syndrome (AIDS) and related death in European Americans among Y chromosome haplogroup I (Y-I) subjects was discovered. Additionally, Y-I haplogroup subjects on HAART took a longer time to HIV-1 viral suppression and were more likely to fail HAART. Both the accelerated progression and longer time to viral suppression results observed in haplogroup Y-I were significant after false-discovery-rate corrections. A higher frequency of AIDS-defining illnesses was also observed in haplogroup Y-I. These effects were independent of the previously identified autosomal AIDS restriction genes. When the Y-I haplogroup subjects were further subdivided into six I subhaplogroups, no one subhaplogroup accounted for the effects on HIV progression, viral load or HAART response. Adjustment of the analyses for population stratification found significant and concordant haplogroup Y-I results. The Y chromosome haplogroup analyses of HIV infection and progression in African Americans were not significant. Our results suggest that one or more loci on the Y chromosome found on haplogroup Y-I have an effect on AIDS progression and treatment responses in European Americans.


The Journal of Infectious Diseases | 2010

Effect of Host Genetics on the Development of Cytomegalovirus Retinitis in Patients with AIDS

Efe Sezgin; Douglas A. Jabs; Sher L. Hendrickson; Mark L. Van Natta; Alexander Zdanov; Richard Alan Lewis; Michael W. Smith; Jennifer L. Troyer; Stephen J. O'Brien

BACKGROUND Cytomegalovirus (CMV) retinitis is a common opportunistic infection among patients with AIDS and still causes visual morbidity despite the wide spread usage of highly active antiretroviral therapy (HAART). The ubiquitous CMV pathogen contains a human interleukin-10 (IL-10) homolog in its genome and utilizes it to evade host immune reactions through an IL-10 receptor mediated immune-suppression pathway. METHODS Effects of IL-10R1, IL-10 and previously described AIDS restriction gene variants are investigated on the development of CMV retinitis in the Longitudinal Study of the Ocular Complications of AIDS (LSOCA) cohort (N = 1284). RESULTS In European Americans (n = 750), a haplotype carrying an amino acid changing variation in the cytoplasmic domain (S420L) of IL-10R1 can be protective (OR, 0.14; 95% CI, 0.02-0.94; P = .04) against, whereas another haplotype carrying an amino acid changing variation in the extracellular domain (I224V) of IL-10R1 can be more susceptible (OR, 6.21; 95% CI, 1.22- 31.54; P = .03) to CMV retinitis. In African Americans (n = 534), potential effects of IL-10 variants are observed. CONCLUSION Host genetics may have a role in the occurrence of CMV retinitis in patients infected with HIV.


PLOS Genetics | 2011

Role of Exonic Variation in Chemokine Receptor Genes on AIDS: CCRL2 F167Y Association with Pneumocystis Pneumonia

Ping An; Rongling Li; Ji Ming Wang; Teizo Yoshimura; Munehisa Takahashi; Ram Samudralal; Stephen J. O'Brien; John P. Phair; James J. Goedert; Gregory D. Kirk; Jennifer L. Troyer; Efe Sezgin; Susan Buchbinder; Sharyne Donfield; George W. Nelson; Cheryl A. Winkler

Chromosome 3p21–22 harbors two clusters of chemokine receptor genes, several of which serve as major or minor coreceptors of HIV-1. Although the genetic association of CCR5 and CCR2 variants with HIV-1 pathogenesis is well known, the role of variation in other nearby chemokine receptor genes remain unresolved. We genotyped exonic single nucleotide polymorphisms (SNPs) in chemokine receptor genes: CCR3, CCRL2, and CXCR6 (at 3p21) and CCR8 and CX3CR1 (at 3p22), the majority of which were non-synonymous. The individual SNPs were tested for their effects on disease progression and outcomes in five treatment-naïve HIV-1/AIDS natural history cohorts. In addition to the known CCR5 and CCR2 associations, significant associations were identified for CCR3, CCR8, and CCRL2 on progression to AIDS. A multivariate survival analysis pointed to a previously undetected association of a non-conservative amino acid change F167Y in CCRL2 with AIDS progression: 167F is associated with accelerated progression to AIDS (RH = 1.90, P = 0.002, corrected). Further analysis indicated that CCRL2-167F was specifically associated with more rapid development of pneumocystis pneumonia (PCP) (RH = 2.84, 95% CI 1.28–6.31) among four major AIDS–defining conditions. Considering the newly defined role of CCRL2 in lung dendritic cell trafficking, this atypical chemokine receptor may affect PCP through immune regulation and inducing inflammation.

Collaboration


Dive into the Efe Sezgin's collaboration.

Top Co-Authors

Avatar

Jennifer L. Troyer

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Stephen J. O'Brien

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

Sher L. Hendrickson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas A. Jabs

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

James A. Lautenberger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James J. Goedert

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bailey Kessing

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Carl McIntosh

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge