Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Egbert Matzner is active.

Publication


Featured researches published by Egbert Matzner.


Soil Science | 2000

Controls on the dynamics of dissolved organic matter in soils: a review.

Karsten Kalbitz; Stephan Solinger; Ji-Hyung Park; Beate Michalzik; Egbert Matzner

Dissolved organic matter (DOM) in soils plays an important role in the biogeochemistry of carbon, nitrogen, and phosphorus, in pedogenesis, and in the transport of pollutants in soils. The aim of this review is to summarize the recent literature about controls on DOM concentrations and fluxes in soi


Biogeochemistry | 2001

Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests

Beate Michalzik; Karsten Kalbitz; Ji-Hyung Park; Stephan Solinger; Egbert Matzner

Dissolved organic carbon (DOC) and nitrogen (DON)represent an important part of the C and N cycles inforest ecosystems. Little is known about the controlson fluxes and concentrations of these compounds insoils under field conditions. Here we compiledpublished data on concentrations and fluxes of DOC andDON from 42 case studies in forest ecosystems of thetemperate zone in order to evaluate controls on alarger temporal and spatial scale. The focus was onannual fluxes and concentrations in throughfall,forest floor leachates and soil solutions. In allcompartments considered, concentrations and fluxesdiffered widely between the sites. Highestconcentrations of DOC and DON were generally observedin forest floor leachates and in A horizons. Highestfluxes occurred in forest floor leachates. The fluxesof DOC and DON in forest floor leachates increasedwith increasing annual precipitation and were alsopositively related to DOC and DON fluxes withthroughfall. Variation in throughfall fluxes couldexplain 46% and 65% of the variation in DOC and DONfluxes from the forest floor, respectively. No generaldifference in DOC and DON concentrations and fluxes inforest floor leachates was found when comparingconiferous and hardwood sites. Concentrations of DOCin forest floor leachates were positively correlatedto the pH of the forest floor. Furthermore, there wasno relationship between organic C and N stocks, soilC/N, litterfall or mineral N inputs and concentrationsand fluxes of DOC and DON in forest floor leachates.Including all compartments, fluxes of DOC and DON werehighly correlated. Ratios of DOC to DON calculatedfrom fluxes from the forest floor were independent ofthe amount of annual precipitation, pointing to asimilar response of DOC and DON to precipitationconditions. A decrease in the ratio of DOC to DON withsoil depth as observed on a plot-scale, was notconfirmed by data analysis on a large scale. Thecontrols observed on annual fluxes and concentrationsof DON and DOC at regional scale differed from thosereported for smaller time and space scales.


Water Air and Soil Pollution | 1998

Synthesis of Nitrogen Pools and Fluxes from European Forest Ecosystems

Nancy B. Dise; Egbert Matzner; Per Gundersen

To investigate which ecosystem parameters determine the risk and magnitude of nitrate leaching we compiled data from published and unpublished sources on dissolved inorganic nitrogen (DIN: NO3-) in throughfall, DIN leaching loss in runoff or seepage water, and other ecosystem characteristics from 139 European forests. Not all data were available for all sites: 126 sites had at least one years data on DIN inputs and DIN leaching loss; 40-50 sites had some data on soil chemistry and/or vegetation pools of N. DIN inputs in throughfall range between <1 and about 70 kg N ha-1 yr-1 and the losses with seepage or runoff range between <1 and 50 kg N ha-1 yr-1. Retention of N within the ecosystem increases with increasing DIN deposition and increasing proportion of NH4+ in deposition. The amount of N in needles and litterfall shows a significant linear relationship with throughfall deposition of DIN, whereas the C:N ratio of the organic (OH) horizon is uncorrelated to the level of throughfall-DIN flux. About 50% of the variability in DIN leaching loss can be explained by the flux of DIN in throughfall. Alternatively, about 60% of the variability in DIN leaching loss can be explained in a two-variable multiple regression combining the C:N ratio of the organic soil and the pH of the mineral soil. The survey data suggest that leaching of DIN from forest ecosystems in Europe is related in part to current DIN deposition and in part to the longer-term internal ecosystem N status as reflected in the chemistry of the humus and acidification status of the soil.


Environmental Pollution | 1998

Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe

Nancy B. Dise; Egbert Matzner; Martin Forsius

We evaluate the relationship between the carbon-to-nitrogen ratio (C:N) of the soil organic horizon and nitrate leaching in runoff or seepage water from 33 conifer forests across Europe. The sites span a geographical range covering 11 countries from Ireland to western Russia and Finland to the southern Alps, and encompass a wide range in throughfall nitrogen deposition. The aim of the study is to evaluate the hypothesis that the C:N ratio of the organic (OH) horizon can be used to estimate the level of leaching of nitrate from a forest ecosystem. The analysis suggests that C:N ratio can be an indicator of nitrate leaching for conifer forests across Europe if these ecosystems are grouped into broad categories of throughfall nitrogen deposition. At low levels of N deposition ( 20 kg N ha−1 year−1) N deposition, nitrate leaching increases with decreasing C:N ratio. In addition, for any given value of C:N, the level of nitrate leaching is higher at high N-deposition sites than at intermediate N-deposition sites. From the current data, OH horizon C:N ratio can give a reasonable estimate of the annual export flux of nitrate (95% confidence interval ca ±5 kg N ha−1 year−1) for sites receiving throughfall-N up to about 30 kg N ha−1 year−1. Above this level, the variability in the data increases, suggesting other factors may need consideration to refine estimates of nitrate leaching.


Plant and Soil | 2013

The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling

Alf Ekblad; Håkan Wallander; Douglas L. Godbold; Cristina Cruz; David Johnson; P. Baldrian; Robert G. Björk; Daniel Epron; Barbara Kieliszewska-Rokicka; Rasmus Kjøller; H. Kraigher; Egbert Matzner; Jonny Neumann; Claude Plassard

There is growing evidence of the importance of extramatrical mycelium (EMM) of mycorrhizal fungi in carbon (C) cycling in ecosystems. However, our understanding has until recently been mainly based on laboratory experiments, and knowledge of such basic parameters as variations in mycelial production, standing biomass and turnover as well as the regulatory mechanisms behind such variations in forest soils is limited. Presently, the production of EMM by ectomycorrhizal (EM) fungi has been estimated at ~140 different forest sites to be up to several hundreds of kg per ha per year, but the published data are biased towards Picea abies in Scandinavia. Little is known about the standing biomass and turnover of EMM in other systems, and its influence on the C stored or lost from soils. Here, focussing on ectomycorrhizas, we discuss the factors that regulate the production and turnover of EMM and its role in soil C dynamics, identifying important gaps in this knowledge. C availability seems to be the key factor determining EMM production and possibly its standing biomass in forests but direct effects of mineral nutrient availability on the EMM can be important. There is great uncertainty about the rate of turnover of EMM. There is increasing evidence that residues of EM fungi play a major role in the formation of stable N and C in SOM, which highlights the need to include mycorrhizal effects in models of global soil C stores.


Water Air and Soil Pollution | 1995

SOIL CHANGES INDUCED BY AIR POLLUTANT DEPOSITION AND THEIR IMPLICATION FOR FORESTS IN CENTRAL EUROPE

Egbert Matzner; Dieter Murach

A survey of leaf and needle losses of European forests in 1993 revealed that 23% of the total forested area had defoliation of more than 25%. The focus of this defoliation is in Central Europe, namely in Poland, Slowakia, Czech Republic, and Germany. The annual surveys of leaf losses and discoloration indicated only small changes during the last years for the coniferous forests in Germany. However, the increasing leaf losses of oak and beech during the last years were alarming.Evaluating the potential relation between air pollutant deposition, soil changes and forest damage, we focus here on the recent changes in deposition and soil conditions, and their implication on tree root development and drought susceptability of trees.While deposition of SO42−, H+ and Ca2+ in many Central European forests decreased in the last decade, input of NH4+ and NO3− remained high or even increased. The H+ load of many forest soils today is thus still high compared to weathering rates, but the proportion of the H+ load resulting from turnover of deposited N has increased. Recent effects of changing depositions on acid forest soils were: depletion of soil Al-pools, release of formerly stored soil SO42−, accumulation of N in soil organic matter, increasing N availability to trees and decreasing concentration of Ca2+ in the soil solution.We hypothesise that soil acidification and increased N availability will decrease the fine root biomass of trees and shift the rooting zone to upper soil layers. Increased above ground growth, observed in many areas of Europe, will furthermore decrease the root/shoot ratio. This development will finally cause increased drought susceptability of trees and is thus of destabilizing nature. The proposed chain of events might be overlapped by other effects of air pollutants on forest ecosystems, namely direct effects of gases on leaves, nutritional inbalances, and interactions with pests.


Biogeochemistry | 2001

Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest

Stephan Solinger; Karsten Kalbitz; Egbert Matzner

Despite growing attention concerning therole of dissolved organic matter (DOM) inelement cycling of forest ecosystems, thecontrols of concentrations and fluxes of bothdissolved organic carbon (DOC) and nitrogen(DON) under field conditions in forest soilsremain only poorly understood. The goal ofthis project is to measure the concentrations and fluxes of DON, NH4+, NO3−and DOC in bulkprecipitation, throughfall, forest floorleachates and soil solutions of a deciduousstand in the Steigerwald region (northernBavaria, Germany). The DOC and DONconcentrations and fluxes were highest inleachates originating from the Oa layer of theforest floor (73 mg C L−1, 2.3 mg NL−1 and about 200–350 kg C, 8–10 kg Nha−1 yr−1). They were observed to behighly variable over time and decreased in themineral topsoil (17 mg C L−1, 0.6 mg NL−1 and about 50–90 kg C, 2.0 to 2.4 kg Nha−1 yr−1). The annual variability ofDOC and DON concentrations and subsequentialDOC/DON ratios was substantial in allsolutions. The DOC and DON concentrations inthroughfall were positively correlated withtemperature. The DOC and DON concentrationsdid not show seasonality in the forest floorand mineral soil. Concentrations were notrelated to litterfall dynamics but didcorrespond in part to the input of DOC and DONfrom throughfall. The throughfall contributionto the overall element fluxes was higher forDON than for DOC. Concentrations and fluxes ofDON were significantly correlated to DOC inthroughfall and the Oi layer. However, thecorrelation was weak in Oa leachates. Inaddition, seasonal and annual variation ofDOC/DON ratios indicated different mechanismsand release rates from the forest floor forboth components. The concentrations of DOC andDON in forest floor leachates were in mostcases dependent neither on the pH value orionic strength of the solution, nor on thewater flux or temperature changes. As aconsequence, the DOC and DON fluxes from theforest floor into the mineral soil werelargely dependent on the water flux if annualand biweekly time scales are considered.


Hydrological Processes | 2000

The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand.

Shih-Chieh Chang; Egbert Matzner

Stemflow of beech (Fagus sylvatica L.) represents a significant input of water and elements to the soil and might influence the spatial patterns and the rate of seepage fluxes at the stand scale. We investigated the soil solution chemistry at different depths and distances from the stem and the element fluxes with stemflow, throughfall and seepage in proximal and distal stem areas of a 130-year-old beech/oak forest in Steigerwald (northern Bavaria, Germany). The proximal stem area (in total 286 m2 ha−1) was defined as a 1 m2, 60 cm deep cylinder around the beech stem. Seepage fluxes were calculated by a soil hydrological model for 1996 using measured soil matrix potentials and tree xylem flow data for calibration. Stemflow represented 6·6% of the annual soil water input. With the exception of H+ fluxes, less than 10% of the total element fluxes with throughfall and stemflow reached the soil via stemflow. The volume-weighted concentrations of H+, K+ and SO42− in stemflow were higher than those in throughfall, while other elements had similar concentrations. Soil solution K+ concentrations decreased with stem distance, but the Na+, Mg2+, Cl− and SO42− concentrations increased. Gradients for other elements were not statistically significant. Stemflow had a strong influence on the spatial patterns of element fluxes with seepage. The water fluxes through the soil of the proximal stem areas at a depth of 60 cm contributed 13·5% to the total seepage at the stand scale. Proximal to the stems about 20% of total seepage for K+, Mn2+, Aln+, dissolved organic N and dissolved organic C were concentrated, but only 8–10% for Na+, Mg2+ and Ca2+. The loss of acid-neutralizing capacity calculated from the flux balance was about four times higher proximal to the stems compared with distal areas, indicating high rates of soil acidification proximal to the stems. Our results confirm the concept of a microsite around beech stems, characterized by high element and water fluxes in comparison with distal stem areas. Calculations of seepage fluxes and element budgets in beech stands have to consider the spatial heterogeneity of fluxes induced by stemflow. Copyright


Science of The Total Environment | 2000

Pools and fluxes of mercury and methylmercury in two forested catchments in Germany

David Schwesig; Egbert Matzner

Mercury (Hg) and methylmercury (CH3Hg+) are global pollutants, but little information is available on rates of atmospheric input, distribution and mobility in soils and catchments of central Europe. The objectives of this study were to investigate input and output fluxes of these compounds in a deciduous and a coniferous catchment in NE Bavaria (Germany), and to estimate pools and mobility of total Hg (Hgtot) and CH3Hg+ at the catchment scale. Bulk precipitation, throughfall, litterfall and runoff were collected biweekly from April 1998 to April 1999. Several soil profiles were sampled to estimate pools of Hg compounds in the catchments. In both catchments highest contents of Hgtot were found in the Oa layer of the forest floor (up to 500 ng g(-1)) and the soil storage of Hgtot calculated for a soil depth of 60 cm was approximately 890 g ha(-1) in the coniferous and 190 g ha(-1) in the deciduous catchment. Highest contents of CH3Hg+ in upland soils were observed in the Oi layer of the forest floor, and soil storage of CH3Hg+ was 4.35 g ha(-1) in the coniferous and 0.59 g ha(-1) in the deciduous catchment. The annual total deposition of Hgtot (total deposition not measured directly but calculated from throughfall and litterfall) was 541 mg ha(-1) year(-1) in the coniferous and 618 mg ha(-1) year(-1) in the deciduous catchment. Total deposition rates of CH3Hg+ were 3.5 and 2.6 mg ha(-1) year(-1). The contribution of litterfall to the total deposition of Hgtot and CH3Hg+ was 55% in the deciduous catchment. In the coniferous catchment, the contribution of litterfall to total deposition was only 29% for Hgtot, but 55% for CH3Hg+. By far the largest proportion of the deposited CH3Hg+ and Hgtot remained in the catchments (85% in the coniferous, 95% in the deciduous). As compared to remote Swedish catchments, deposition and output via runoff of Hgtot, were higher, but deposition and output of CH3Hg+ were lower in our catchments. In contrast to other studies, the annual budget revealed no differences in the mobility between the two species at the catchment scale. However, temporal patterns of the runoff fluxes and converse gradients of CH3Hg+ and Hgtot contents in the forest floor indicated differences in mobility on shorter time scales.


Environmental Science & Technology | 1995

Long-term changes in water and soil chemistry in spruce and beech forests, solling, Germany.

Lambert G. Wesselink; Karl Josef Meiwes; Egbert Matzner; Alfred Stein

With declining sulfur emissions in western Europe, the degree and time scales of reversibility of soil and freshwater acidification are of major interest. We analyzed long-term changes (1969-1991) in the chemistry of bulk precipitation, throughfall water, soil water, and exchangeable base cations in a beech and a spruce forest in Solling, Germany. Time trends in dissolved and exchangeable pools of base cations in the soils were compared with simulations from a simple mechanistic soil chemistry model to identify the processes controlling long-term changes in soil chemistry. In the early 1970s, profound acidification occurred in the spruce and beech soils due to increasing concentrations of dissolved SO 4

Collaboration


Dive into the Egbert Matzner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karsten Kalbitz

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy B. Dise

Manchester Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge