Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eigo Fukai is active.

Publication


Featured researches published by Eigo Fukai.


DNA Research | 2011

Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L.

Shusei Sato; Hideki Hirakawa; Sachiko Isobe; Eigo Fukai; Akiko Watanabe; Midori Kato; Kumiko Kawashima; Chiharu Minami; Akiko Muraki; Naomi Nakazaki; Chika Takahashi; Shinobu Nakayama; Yoshie Kishida; Mitsuyo Kohara; Manabu Yamada; Hisano Tsuruoka; Shigemi Sasamoto; Satoshi Tabata; Tomoyuki Aizu; Atsushi Toyoda; Tadasu Shin-I; Yohei Minakuchi; Yuji Kohara; Asao Fujiyama; Suguru Tsuchimoto; Shin-ichiro Kajiyama; Eri Makigano; Nobuko Ohmido; Nakako Shibagaki; Joyce Cartagena

The whole genome of Jatropha curcas was sequenced, using a combination of the conventional Sanger method and new-generation multiplex sequencing methods. Total length of the non-redundant sequences thus obtained was 285 858 490 bp consisting of 120 586 contigs and 29 831 singlets. They accounted for ∼95% of the gene-containing regions with the average G + C content was 34.3%. A total of 40 929 complete and partial structures of protein encoding genes have been deduced. Comparison with genes of other plant species indicated that 1529 (4%) of the putative protein-encoding genes are specific to the Euphorbiaceae family. A high degree of microsynteny was observed with the genome of castor bean and, to a lesser extent, with those of soybean and Arabidopsis thaliana. In parallel with genome sequencing, cDNAs derived from leaf and callus tissues were subjected to pyrosequencing, and a total of 21 225 unigene data have been generated. Polymorphism analysis using microsatellite markers developed from the genomic sequence data obtained was performed with 12 J. curcas lines collected from various parts of the world to estimate their genetic diversity. The genomic sequence and accompanying information presented here are expected to serve as valuable resources for the acceleration of fundamental and applied research with J. curcas, especially in the fields of environment-related research such as biofuel production. Further information on the genomic sequences and DNA markers is available at http://www.kazusa.or.jp/jatropha/.


Plant Journal | 2012

Establishment of a Lotus japonicus gene tagging population using the exon‐targeting endogenous retrotransposon LORE1

Eigo Fukai; Takashi Soyano; Yosuke Umehara; Shinobu Nakayama; Hideki Hirakawa; Satoshi Tabata; Shusei Sato; Makoto Hayashi

We established a gene tagging population of the model legume Lotus japonicus using an endogenous long terminal repeat (LTR) retrotransposon Lotus Retrotransposon 1 (LORE1). The population was composed of 2450 plant lines, from which a total of 4532 flanking sequence tags of LORE1 were recovered by pyrosequencing. The two-dimensional arrangement of the plant population, together with the use of multiple identifier sequences in the primers used to amplify the flanking regions, made it possible to trace insertions back to the original plant lines. The large-scale detection of new LORE1 insertion sites revealed a preference for genic regions, especially in exons of protein-coding genes, which is an interesting feature to consider in the interaction between host genomes and chromoviruses, to which LORE1 belongs, a class of retrotransposon widely distributed among plants. Forward screening of the symbiotic mutants from the population succeeded to identify five symbiotic mutants of known genes. These data suggest that LORE1 is robust as a genetic tool.


Molecular Genetics and Genomics | 2003

Genomic organization of the S core region and the S flanking regions of a class-II S haplotype in Brassica rapa

Eigo Fukai; Ryo Fujimoto; Takeshi Nishio

The nucleotide sequence of an 86.4-kb region that includes the SP11, SRK, and SLG genes of Brassica rapa S-60 (a class-II S haplotype) was determined. In the sequenced region, 13 putative genes were found besides SP11-60, SRK-60, and SLG-60. Five of these sequences were isolated as cDNAs, five were homologues of known genes, cDNAs, or ORFs, and three are hypothetical ORFs. Based on their nucleotide sequences, however, some of them are thought to be non-functional. Two regions of colinearity between the class-II S-60 and Brassica class-I S haplotypes were identified, i.e., S flanking region 1 which shows partial colinearity of non-genic sequences and S flanking region 2 which shows a high level of colinearity. The observed colinearity made it possible to compare the order of SP-11, SRK, and SLG genes in the S locus between the five sequenced S haplotypes. It emerged that the order of SRK and SLG in class-II S-60is the reverse of that in the four class-I S haplotypes reported so far, and the order of SP11, SRK and SLG is the opposite of that in the class-I haplotype S-910. The possible gene designated as SAN1 ( S locus Anther-expressed Non-coding RNA like-1), which is located in the region between SP11-60 and SRK-60, has features reminiscent of genes for non-coding RNAs (ncRNAs), but no homologous sequences were found in the databases. This sequence is transcribed in anthers but not in stigmas or leaves. These features of the genomic structure of S-60 are discussed with special reference to the characteristics of class-II S haplotypes.


PLOS Genetics | 2010

Derepression of the plant chromovirus LORE1 induces germline transposition in regenerated plants.

Eigo Fukai; Yosuke Umehara; Shusei Sato; Makoto Endo; Hiroshi Kouchi; Makoto Hayashi; Jens Stougaard; Hirohiko Hirochika

Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR) retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5′ LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool.


Genetics | 2006

Comparison of the Genome Structure of the Self-Incompatibility (S) Locus in Interspecific Pairs of S Haplotypes

Ryo Fujimoto; Keiichi Okazaki; Eigo Fukai; Makoto Kusaba; Takeshi Nishio

The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen, both of which are encoded in the S locus. The nucleotide sequence analyses of many SRK and SP11/SCR alleles have identified several interspecific pairs of S haplotypes having highly similar sequences between B. oleracea and B. rapa. These interspecific pairs of S haplotypes are considered to be derived from common ancestors and to have maintained the same recognition specificity after speciation. In this study, the genome structures of three interspecific pairs of S haplotypes were compared by sequencing SRK, SP11/SCR, and their flanking regions. Regions between SRK and SP11/SCR in B. oleracea were demonstrated to be much longer than those of B. rapa and several retrotransposon-like sequences were identified in the S locus in B. oleracea. Among the seven retrotransposon-like sequences, six sequences were found to belong to the ty3 gypsy group. The gag sequences of the retrotransposon-like sequences were phylogenetically different from each other. In Southern blot analysis using retrotransposon-like sequences as probes, the B. oleracea genome showed more signals than the B. rapa genome did. These findings suggest a role for the S locus and genome evolution in self-incompatible plant species.


Plant Molecular Biology | 2006

Suppression of gene expression of a recessive SP11/SCR allele by an untranscribed SP11/SCR allele in Brassica self-incompatibility

Ryo Fujimoto; Tetsu Sugimura; Eigo Fukai; Takeshi Nishio

Mutations in the S locus of a self-compatible cultivar Yellow Sarson in Brassica rapa, which has a self-compatible class-I S haplotype, S-f2, were investigated. S-28 in Brassica oleracea was found to be a member of an interspecific pair with S-f2 in B.rapa. The original S haplotype of S-f2 was identified to be S-54 in B.rapa. Sequence comparison of alleles in S-f2 with those in S-54 and B. oleracea S-28 revealed insertion of a retrotransposon-like sequence in the first intron of SRK and 89-bp deletion in the promoter region of SP11. No transcripts of SRK and SP11 were detected in S-f2 homozygotes, suggesting that the insertion and the deletion in SRK and SP11, respectively, caused the loss of the function of these genes. Promoter assay using transgenic plants indicated that the SP11 promoter of S-f2 has no activity. Heterozygotes of S-f2 and a normal class-II S haplotype, S-60, in B. rapa were found to be self-compatible. Interestingly, transcription of SP11-60 was revealed to be suppressed in the S-f2/S-60 heterozygotes, suggesting that an untranscribed class-I SP11 allele suppresses the expression of a recessive class-II SP11 allele in the anthers of S heterozygotes. Similar phenomenon was observed in heterozygotes of a self-compatible class-I S haplotype and a self-incompatible class-II S haplotype in B. oleracea.


Plant Physiology | 2012

The SNARE Protein SYP71 Expressed in Vascular Tissues Is Involved in Symbiotic Nitrogen Fixation in Lotus japonicus Nodules

Tsuneo Hakoyama; Ryo Oi; Kazuya Hazuma; Eri Suga; Yuka Adachi; Mayumi Kobayashi; Rie Akai; Shusei Sato; Eigo Fukai; Satoshi Tabata; Satoshi Shibata; Guojiang Wu; Yoshihiro Hase; Atsushi Tanaka; Masayoshi Kawaguchi; Hiroshi Kouchi; Yosuke Umehara; Norio Suganuma

Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Receptor (SNARE) proteins are crucial for signal transduction and development in plants. Here, we investigate a Lotus japonicus symbiotic mutant defective in one of the SNARE proteins. When in symbiosis with rhizobia, the growth of the mutant was retarded compared with that of the wild-type plant. Although the mutant formed nodules, these exhibited lower nitrogen fixation activity than the wild type. The rhizobia were able to invade nodule cells, but enlarged symbiosomes were observed in the infected cells. The causal gene, designated LjSYP71 (for L. japonicus syntaxin of plants71), was identified by map-based cloning and shown to encode a Qc-SNARE protein homologous to Arabidopsis (Arabidopsis thaliana) SYP71. LjSYP71 was expressed ubiquitously in shoot, roots, and nodules, and transcripts were detected in the vascular tissues. In the mutant, no other visible defects in plant morphology were observed. Furthermore, in the presence of combined nitrogen, the mutant plant grew almost as well as the wild type. These results suggest that the vascular tissues expressing LjSYP71 play a pivotal role in symbiotic nitrogen fixation in L. japonicus nodules.


Plant Journal | 2015

Loss of function mutations in the rice chromomethylase OsCMT3a cause a burst of transposition.

Chaoyang Cheng; Yoshiaki Tarutani; Akio Miyao; Tasuku Ito; Muneo Yamazaki; Hiroaki Sakai; Eigo Fukai; Hirohiko Hirochika

Methylation patterns of plants are unique as, in addition to the methylation at CG dinucleotides that occurs in mammals, methylation also occurs at non-CG sites. Genes are methylated at CG sites, but transposable elements (TEs) are methylated at both CG and non-CG sites. The role of non-CG methylation in transcriptional silencing of TEs is being extensively studied at this time, but only very rare transpositions have been reported when non-CG methylation machineries have been compromised. To understand the role of non-CG methylation in TE suppression and in plant development, we characterized rice mutants with changes in the chromomethylase gene, OsCMT3a. oscmt3a mutants exhibited a dramatic decrease in CHG methylation, changes in the expression of some genes and TEs, and pleiotropic developmental abnormalities. Genome resequencing identified eight TE families mobilized in oscmt3a during normal propagation. These TEs included tissue culture-activated copia retrotransposons Tos17 and Tos19 (Lullaby), a pericentromeric clustered high-copy-number non-autonomous gypsy retrotransposon Dasheng, two copia retrotransposons Osr4 and Osr13, a hAT-tip100 transposon DaiZ, a MITE transposon mPing, and a LINE element LINE1-6_OS. We confirmed the transposition of these TEs by polymerase chain reaction (PCR) and/or Southern blot analysis, and showed that transposition was dependent on the oscmt3a mutation. These results demonstrated that OsCMT3a-mediated non-CG DNA methylation plays a critical role in development and in the suppression of a wide spectrum of TEs. These in planta mobile TEs are important for studying the interaction between TEs and the host genome, and for rice functional genomics.


The Plant Genome | 2013

Activation of an Endogenous Retrotransposon Associated with Epigenetic Changes in Lotus japonicus: A Tool for Functional Genomics in Legumes

Eigo Fukai; Jens Stougaard; Makoto Hayashi

Long terminal repeat retrotransposons occupy a large portion of genomes in flowering plants. In spite of their abundance, the majority are silenced and rarely transpose. One of the examples of a highly active retrotransposon is Lotus Retrotransposon 1 (LORE1), of the model legume Lotus japonicus (Regel) K. Larsen (syn. Lotus corniculatus L. var. japonicus Regel). LORE1 has several unusual characteristics that are interesting both for studying evolutional genomics and for the use of LORE1 as a genetic tool. In this review, we present the characteristics of LORE1 and discuss the biological significance of LORE1 as a member of chromovirus, a chromodomain containing clade of the Gypsy superfamily. Then we discuss possibilities and methodologies for using endogenous transposable elements as mutagens to generate gene tagging populations in plants.


Archive | 2014

Forward and Reverse Genetics: The LORE1 Retrotransposon Insertion Mutants

Eigo Fukai; Anna Małolepszy; Niels Sandal; Makoto Hayashi; Stig U. Andersen

The endogenous Lotus retrotransposon 1 (LORE1) transposes in the germ line of Lotus japonicus plants that carry an active element. This feature of LORE1 has been exploited for generation of a large non-transgenic insertion mutant population, where insertions have been annotated using next-generation sequencing approaches. The LORE1 mutant lines are freely available and can be ordered online. Endogenous retrotransposons are also active in many other plant species. Based on the methods developed for LORE1 mutagenesis, it should be simple to establish similar systems in other species, once an appropriate element has been identified.

Collaboration


Dive into the Eigo Fukai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Tabata

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Kouchi

International Christian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge