Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryo Fujimoto is active.

Publication


Featured researches published by Ryo Fujimoto.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity

Ryo Fujimoto; Jennifer M. Taylor; Sachiko Shirasawa; W. James Peacock; Elizabeth S. Dennis

Arabidopsis thaliana shows hybrid vigor (heterosis) in progeny of crosses between Columbia-0 and C24 accessions. Hybrid vigor was evident as early as mature seeds and in seedlings 3 d after sowing (DAS). At 3 DAS, genes encoding chloroplast-located proteins were significantly overrepresented (187) among the 724 genes that have greater than midparent values of expression in the hybrid. Many of these genes are involved in chlorophyll biosynthesis and photosynthesis. The rate of photosynthesis was constant per unit leaf area in parents and hybrids. Larger cell sizes in the hybrids were associated with more chloroplasts per cell, more total chlorophyll, and more photosynthesis. The increased transcription of the chloroplast-targeted genes was restricted to the 3–7 DAS period. At 10 DAS, only 118 genes had expression levels different from the expected midparent value in the hybrid, and only 12 of these genes were differentially expressed at 3 DAS. The early increase in activity of genes involved in photosynthesis and the associated phenomena of increases in cell size and number through development, leading to larger leaf areas of all leaves in the hybrid, suggest a central role for increased photosynthesis in the production of the heterotic biomass. In support of this correlation, we found that an inhibitor of photosynthesis eliminated heterosis and that higher light intensities enhanced both photosynthesis and heterosis. In hybrids with low-level heterosis (Landsberg erecta x Columbia-0), chloroplast-targeted genes were not up-regulated and leaf areas were only marginally increased.


Trends in Genetics | 2013

The role of epigenetics in hybrid vigour

Michael Groszmann; Ian K. Greaves; Ryo Fujimoto; W. James Peacock; Elizabeth S. Dennis

Hybrid vigour, or heterosis, refers to the increased yield and biomass of hybrid offspring relative to the parents. Although this has been exploited in plants for agriculture and horticulture, the molecular and cellular mechanisms underlying hybrid vigour are largely unknown. Genetic analyses show that there are a large number of quantitative trait loci (QTLs) that contribute to the heterotic phenotype, indicating that it is a complex phenomenon. Gene expression in hybrids is regulated by the interactions of the two parental epigenetic systems and the underlying genomes. Increasing understanding of the interplay of small RNA (sRNA) molecules, DNA methylation, and histone marks provides new opportunities to define the basis of hybrid vigour and to understand why F1 heterosis is not passed on to subsequent generations. We discuss recent findings that suggest the existence of several pathways that alter DNA methylation patterns, which may lead to transcriptional changes resulting in the heterotic phenotype.


Genetics | 2006

Comparison of the Genome Structure of the Self-Incompatibility (S) Locus in Interspecific Pairs of S Haplotypes

Ryo Fujimoto; Keiichi Okazaki; Eigo Fukai; Makoto Kusaba; Takeshi Nishio

The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen, both of which are encoded in the S locus. The nucleotide sequence analyses of many SRK and SP11/SCR alleles have identified several interspecific pairs of S haplotypes having highly similar sequences between B. oleracea and B. rapa. These interspecific pairs of S haplotypes are considered to be derived from common ancestors and to have maintained the same recognition specificity after speciation. In this study, the genome structures of three interspecific pairs of S haplotypes were compared by sequencing SRK, SP11/SCR, and their flanking regions. Regions between SRK and SP11/SCR in B. oleracea were demonstrated to be much longer than those of B. rapa and several retrotransposon-like sequences were identified in the S locus in B. oleracea. Among the seven retrotransposon-like sequences, six sequences were found to belong to the ty3 gypsy group. The gag sequences of the retrotransposon-like sequences were phylogenetically different from each other. In Southern blot analysis using retrotransposon-like sequences as probes, the B. oleracea genome showed more signals than the B. rapa genome did. These findings suggest a role for the S locus and genome evolution in self-incompatible plant species.


Genetics | 2007

Effects of Recombination on Hitchhiking Diversity in the Brassica Self-incompatibility Locus Complex

Shohei Takuno; Ryo Fujimoto; Tetsu Sugimura; Keiichi Sato; Shunsuke Okamoto; Shaoling Zhang; Takeshi Nishio

In self-incompatibility, a number of S haplotypes are maintained by frequency-dependent selection, which results in trans-specific S haplotypes. The region of several kilobases (∼40–60 kb) from SP6 to SP2, including self-incompatibility-related genes and some adjacent genes in Brassica rapa, has high nucleotide diversity due to the hitchhiking effect, and therefore we call this region the “S-locus complex.” Recombination in the S-locus complex is considered to be suppressed. We sequenced regions of >50 kb of the S-locus complex of three S haplotypes in B. rapa and found higher nucleotide diversity in intergenic regions than in coding regions. Two highly similar regions of >10 kb were found between BrS-8 and BrS-46. Phylogenetic analysis using trans-specific S haplotypes (called interspecific pairs) of B. rapa and B. oleracea suggested that recombination reduced the nucleotide diversity in these two regions and that the genes not involved in self-incompatibility in the S-locus complex and the kinase domain, but not the S domain, of SRK have also experienced recombination. Recombination may reduce hitchhiking diversity in the S-locus complex, whereas the region from the S domain to SP11 would disfavor recombination.


Molecular Breeding | 2012

Genetic mapping of a fusarium wilt resistance gene in Brassica oleracea

Zi-jing Pu; Motoki Shimizu; Yan-ju Zhang; Tomohiko Nagaoka; Takeshi Hayashi; Hidetaka Hori; Satoru Matsumoto; Ryo Fujimoto; Keiichi Okazaki

Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans is one of the most important diseases of Brassica crops, resulting in severe reductions in yield and quality. To characterize the inheritance pattern of fusarium resistance, a cross between a susceptible broccoli and a resistant cabbage was subjected to segregation analysis. Results indicated that resistance was controlled by a single dominant allele. This gene was named Foc-Bo1 and mapped to linkage group seven (O7) by both the segregation test and quantitative trait locus (QTL) analysis. The QTL on O7 was detected with a logarithm of odds score (LOD) of 19.5, which was above the threshold value with genome-wide 1% significance level (2.01). A minor QTL was also detected on O4 with a LOD score of 2.06. Inoculation tests indicated that stable expression of fusarium resistance at high temperatures required Foc-Bo1 homozygosity. The association between Foc-Bo1 and the closest simple sequence repeat marker (KBrS003O1N10) was analyzed in three F3 populations. Based on these studies, KBrS003O1N10 represents an effective marker-assisted selection (MAS) tool for breeding fusarium wilt resistance into Brassica oleracea crops. To our knowledge, this is the first paper to map the fusarium-resistance gene in Brassica species and to validate the effectiveness of MAS in improving fusarium resistance in these important plants.


Plant Molecular Biology | 2014

Identification of candidate genes for fusarium yellows resistance in Chinese cabbage by differential expression analysis

Motoki Shimizu; Ryo Fujimoto; Hua Ying; Zi-jing Pu; Yusuke Ebe; Takahiro Kawanabe; Natsumi Saeki; Jennifer M. Taylor; Makoto Kaji; Elizabeth S. Dennis; Keiichi Okazaki

AbstractFusarium yellows caused by Fusarium oxysporum f. sp. conglutinans is an important disease of Brassica worldwide. To identify a resistance (R) gene against Fusarium yellows in Chinese cabbage (Brassica rapa var. pekinensis), we analyzed differential expression at the whole genome level between resistant and susceptible inbred lines using RNA sequencing. Four hundred and eighteen genes were significantly differentially expressed, and these were enriched for genes involved in response to stress or stimulus. Seven dominant DNA markers at putative R-genes were identified. Presence and absence of the sequence of the putative R-genes, Bra012688 and Bra012689, correlated with the resistance of six inbred lines and susceptibility of four inbred lines, respectively. In F2 populations derived from crosses between resistant and susceptible inbred lines, presence of Bra012688 and Bra012689 cosegregated with resistance, suggesting that Bra012688 and Bra012689 are good candidates for fusarium yellows resistance in Chinese cabbage.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Role of DNA methylation in hybrid vigor in Arabidopsis thaliana

Takahiro Kawanabe; Sonoko Ishikura; Naomi Miyaji; Taku Sasaki; Li Min Wu; Etsuko Itabashi; Satoko Takada; Motoki Shimizu; Takeshi Takasaki-Yasuda; Kenji Osabe; W. James Peacock; Elizabeth S. Dennis; Ryo Fujimoto

Significance Hybrid vigor is an important phenomenon in basic genetics and in agricultural practice, but the bases of the superior performance of the hybrid relative to its parents in biomass and seed production remain elusive. In recent years, it has been suggested that epigenetic controls on levels of gene action are involved. Using mutants of genes involved in DNA methylation, we show that RNA polymerase IV or methyltransferase I do not contribute to the generation of the heterotic phenotype but that decrease in DNA methylation 1, a nucleosome remodeller with an effect on DNA methylation level, is required to produce a full level of hybrid vigor. Hybrid vigor or heterosis refers to the superior performance of F1 hybrid plants over their parents. Heterosis is particularly important in the production systems of major crops. Recent studies have suggested that epigenetic regulation such as DNA methylation is involved in heterosis, but the molecular mechanism of heterosis is still unclear. To address the epigenetic contribution to heterosis in Arabidopsis thaliana, we used mutant genes that have roles in DNA methylation. Hybrids between C24 and Columbia-0 (Col) without RNA polymerase IV (Pol IV) or methyltransferase I (MET1) function did not reduce the level of biomass heterosis (as evaluated by rosette diameter). Hybrids with a mutation in decrease in dna methylation 1 (ddm1) showed a decreased heterosis level. Vegetative heterosis in the ddm1 mutant hybrid was reduced but not eliminated; a complete reduction could result if there was a change in methylation at all loci critical for generating the level of heterosis, whereas if only a proportion of the loci have methylation changes there may only be a partial reduction in heterosis.


International Journal of Molecular Sciences | 2012

Molecular Mechanisms of Epigenetic Variation in Plants

Ryo Fujimoto; Taku Sasaki; Ryo Ishikawa; Kenji Osabe; Takahiro Kawanabe; Elizabeth S. Dennis

Natural variation is defined as the phenotypic variation caused by spontaneous mutations. In general, mutations are associated with changes of nucleotide sequence, and many mutations in genes that can cause changes in plant development have been identified. Epigenetic change, which does not involve alteration to the nucleotide sequence, can also cause changes in gene activity by changing the structure of chromatin through DNA methylation or histone modifications. Now there is evidence based on induced or spontaneous mutants that epigenetic changes can cause altering plant phenotypes. Epigenetic changes have occurred frequently in plants, and some are heritable or metastable causing variation in epigenetic status within or between species. Therefore, heritable epigenetic variation as well as genetic variation has the potential to drive natural variation.


BMC Plant Biology | 2016

Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage

Natsumi Saeki; Takahiro Kawanabe; Hua Ying; Motoki Shimizu; Mikiko Kojima; Hiroshi Abe; Keiichi Okazaki; Makoto Kaji; Jennifer M. Taylor; Hitoshi Sakakibara; W. James Peacock; Elizabeth S. Dennis; Ryo Fujimoto

BackgroundHeterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior performance compared to their parental inbred lines. Most commercial Chinese cabbage cultivars are F1 hybrids and their level of hybrid vigour is of critical importance and is a key selection criterion in the breeding system.ResultsWe have characterized the heterotic phenotype of one F1 hybrid cultivar of Chinese cabbage and its parental lines from early- to late-developmental stages of the plants. Hybrid cotyledons are larger than those of the parents at 4 days after sowing and biomass in the hybrid, determined by the fresh weight of leaves, is greater than that of the larger parent line by approximately 20 % at 14 days after sowing. The final yield of the hybrid harvested at 63 days after sowing is 25 % greater than the yield of the better parent. The larger leaves of the hybrid are a consequence of increased cell size and number of the photosynthetic palisade mesophyll cells and other leaf cells. The accumulation of plant hormones in the F1 was within the range of the parental levels at both 2 and 10 days after sowing. Two days after sowing, the expression levels of chloroplast-targeted genes in the cotyledon cells were upregulated in the F1 hybrid relative to their mid parent values. Shutdown of chlorophyll biosynthesis in the cotyledon by norflurazon prevented the increased leaf area in the F1 hybrid.ConclusionsIn the cotyledons of F1 hybrids, chloroplast-targeted genes were upregulated at 2 days after sowing. The increased activity levels of this group of genes suggested that their differential transcription levels could be important for establishing early heterosis but the increased transcription levels were transient. Inhibition of the photosynthetic process in the cotyledon reduced heterosis in later seedling stages. These observations suggest early developmental events in the germinating seedling of the hybrid may be important for later developmental vigour and yield advantage.


Breeding Science | 2014

Production of high yield short duration Brassica napus by interspecific hybridization between B. oleracea and B. rapa.

Md. Masud Karim; Asfakun Siddika; Nazmoon Naher Tonu; Delwar M. Hossain; Md. Bahadur Meah; Takahiro Kawanabe; Ryo Fujimoto; Keiichi Okazaki

Brassica napus is a leading oilseed crop throughout many parts of the world. It is well adapted to long day photoperiods, however, it does not adapt well to short day subtropical regions. Short duration B. napus plants were resynthesized through ovary culture from interspecific crosses in which B. rapa cultivars were reciprocally crossed with B. oleracea. From five different combinations, 17 hybrid plants were obtained in both directions. By self-pollinating the F1 hybrids or introgressing them with cultivated B. napus, resynthesized (RS) F3 and semi-resynthesized (SRS) F2 generations were produced, respectively. In field trial in Bangladesh, the RS B. napus plants demonstrated variation in days to first flowering ranging from 29 to 73 days; some of which were similar to cultivated short duration B. napus, but not cultivated short duration B. rapa. The RS and SRS B. napus lines produced 2–4.6 and 1.6–3.7 times higher yields, respectively, as compared to cultivated short duration B. napus. Our developed RS lines may be useful for rapeseed breeding not only for subtropical regions, but also for areas such as Canada and Europe where spring rapeseed production can suffer from late spring frosts. Yield and earliness in RS lines are discussed.

Collaboration


Dive into the Ryo Fujimoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Osabe

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth S. Dennis

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. James Peacock

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge