Eileen T. Duenas
Genentech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eileen T. Duenas.
Nature Biotechnology | 2008
Jagath R. Junutula; Helga Raab; Suzanna Clark; Sunil Bhakta; Douglas D. Leipold; Sylvia Weir; Yvonne Chen; Michelle Simpson; Siao Ping Tsai; Mark S. Dennis; Yanmei Lu; Y. Gloria Meng; Carl Ng; Jihong Yang; Chien C Lee; Eileen T. Duenas; Jeffrey Gorrell; Viswanatham Katta; Amy Kim; Kevin McDorman; Kelly Flagella; Rayna Venook; Sarajane Ross; Susan D. Spencer; Wai Lee Wong; Henry B. Lowman; Richard Vandlen; Mark X. Sliwkowski; Richard H. Scheller; Paul Polakis
Antibody-drug conjugates enhance the antitumor effects of antibodies and reduce adverse systemic effects of potent cytotoxic drugs. However, conventional drug conjugation strategies yield heterogenous conjugates with relatively narrow therapeutic index (maximum tolerated dose/curative dose). Using leads from our previously described phage display–based method to predict suitable conjugation sites, we engineered cysteine substitutions at positions on light and heavy chains that provide reactive thiol groups and do not perturb immunoglobulin folding and assembly, or alter antigen binding. When conjugated to monomethyl auristatin E, an antibody against the ovarian cancer antigen MUC16 is as efficacious as a conventional conjugate in mouse xenograft models. Moreover, it is tolerated at higher doses in rats and cynomolgus monkeys than the same conjugate prepared by conventional approaches. The favorable in vivo properties of the near-homogenous composition of this conjugate suggest that our strategy offers a general approach to retaining the antitumor efficacy of antibody-drug conjugates, while minimizing their systemic toxicity.
Nature Medicine | 1996
Olufunmi L. Johnson; Jeffrey L. Cleland; Hye Jung Lee; Margarita Charnis; Eileen T. Duenas; Warren E. Jaworowicz; Douglas Shepard; Azin Shahzamani; Andrew J. S. Jones; Scott D. Putney
An injectable sustained–release form of human growth hormone (hGH) was developed by stabilizing and encapsulating the protein, without altering its integrity, into biodegradable microspheres using a novel cryogenic process. A single injection of microspheres in monkeys resulted in elevated serum levels of recombinant hCH (rhGH) for more than one month. Insulin–like growth factor–I (ICF–I) and its binding protein IGFBP–3, both of which are induced by hGH, were also elevated for four weeks by the rhGH containing microspheres to a level greater than that induced by the same amount of rhGH administered by daily injections. These results show that, by using appropriate methods of stabilization and encapsulation, the advantages of sustained–release formulations previously demonstrated for low–molecular–weight drugs can now be extended to protein therapeutics.
Pharmaceutical Research | 1997
Olufunmi Lily Johnson; Warren E. Jaworowicz; Jeffrey L. Cleland; Leonie Bailey; Margarita Charnis; Eileen T. Duenas; Chichih Wu; Douglas Shepard; Sheila Magil; Andrew J. S. Jones; Scott D. Putney
AbstractPurpose. To produce and evaluate sustained-acting formulations of recombinant human growth hormone (rhGH) made by a novel microencapsulation process. Methods. The protein was stabilized by forming an insoluble complex with zinc and encapsulated into microspheres of poly (D,L-lactide co-glycolide) (PLGA) which differed in polymer molecular weight (8−3 1kD), polymer end group, and zinc content. The encapsulation procedure was cryogenic, non-aqueous, and did not utilize surfactants or emulsification. The rhGH extracted from each of these microsphere formulations was analyzed by size-exclusion, ion-exchange and reversed-phase chromatography, SDS-polyacrylamide gel electrophoresis, peptide mapping, and cell proliferation of a cell line expressing the hGH receptor. In addition, the in vivorelease profile was determined after subcutaneous administration of the microspheres to rats and juvenile rhesus monkeys. Results. Protein and bioactivity analyses of the rhGH extracted from three different microsphere formulations showed that the encapsulated protein was unaltered relative to the protein before encapsulation. In vivo, microsphere administration to rats or monkeys induced elevated levels of serum rhGH for up to one month, more than 20-fold longer than was induced by the same amount of protein injected subcutaneously as a solution. The rate of protein release differed between the three microsphere formulations and was determined by the molecular weight and hydrophobicity of the PLGA. The serum rhGH profile, after three sequential monthly doses of the one formulation examined, was reproducible and showed no dose accumulation. Conclusions. Using a novel process, rhGH can be stabilized and encapsulated in a solid state into PLGA microspheres and released with unaltered properties at different rates.
Journal of Controlled Release | 2001
Jeffrey L. Cleland; Eileen T. Duenas; Ann Park; Ann L. Daugherty; Jeanne Kahn; Joseph Kowalski; Andrew Cuthbertson
Although preclinical animal studies have demonstrated the utility of recombinant human vascular endothelial growth factor (rhVEGF) in promoting neovascularization in regions of ischemia, rhVEGF systemic administration did not provide clinical benefit to patients in recent placebo-controlled Phase II clinical trials. The amount of rhVEGF localized in the ischemic region after systemic administration is minimal and does not persist for more than 1 day. A greater persistence of rhVEGF at the region of ischemia may provide an increased angiogenesis with the eventual formation of patent blood vessels to restore nourishment to the tissues. We sought to develop a formulation of rhVEGF in poly(D,L-lactide--co-glycolide) (PLG) microspheres that would provide a continuous local delivery of intact protein. A stable formulation of rhVEGF for encapsulation contained a small amount of a stabilizing sugar, trehalose. Addition of excess trehalose increased the rate of release from the PLG. In addition, PLG with free acid end groups appeared to retard the initial release of rhVEGF by associating with it through ionic interactions at the positively charged heparin binding domain. rhVEGF was released continuously for 21 days with a very low (less than 10%) initial burst. The released rhVEGF aggregated and hydrolyzed over time and lost heparin affinity but not receptor affinity. The compression molding of rhVEGF PLG microspheres into disks yielded formulations with a low initial release and a lag of 10 days followed by complete release. The PLG microsphere formulations were assessed in the corneal implant model of angiogenesis and generated a dose-dependent angiogenic response. These formulations were also administered intravitreally and subretinally, generating local neovascularization comparable to the human disease states, vitroretinopathy and age-related macular degeneration, respectively. The rhVEGF PLG formulations may increase local angiogenesis without systemic side effects and may also be useful in the development of ocular disease models.
Journal of Controlled Release | 2000
Xanthe M. Lam; Eileen T. Duenas; Ann L. Daugherty; Nancy Levin; Jeffrey L. Cleland
Recombinant human insulin-like growth factor-I (rhIGF-I) was found to improve glycemic control and enhance insulin sensitivity in patients with a syndrome of severe insulin resistance. Therefore, the protein may be considered as an alternative therapy in the treatment of diabetes when the patients become insensitive to insulin treatment. Because the protein was administered twice per day in the clinical trials, a sustained release polylactic-co-glycolic acid (PLGA) formulation for rhIGF-I with low initial burst (<20%), maximum possible protein loading (15-20%) and a continuous release of 1-2 weeks may provide greater patient convenience and compliance. The protein was encapsulated in PLGA for sustained release using a spray freeze-drying technique. Formulation parameters such as protein loading, polymer end group, and the presence of zinc carbonate were studied for their effects on in vitro release of rhIGF-I from PLGA microspheres. As the protein loading was increased, the initial burst increased. Due to the hydrophilic properties of the polymers, rhIGF-I encapsulated in unblocked PLGA (free acid end groups) gave a lower initial burst and a more steady-state release profile than the blocked PLGA (hydrocarbon end groups) with the same protein loading and PLGA molecular weight. At 15% w/w protein loading, the addition of 6% w/w zinc carbonate as a protein release modifier to the unblocked PLGA (12 kDa) decreased the initial burst of rhIGF-I. Therefore, a formulation consisting of 15% rhIGF-I and 6% zinc carbonate in 12 kDa, unblocked 50:50 PLGA can provide the required release characteristics in vitro. Rat studies revealed that rhIGF-I in this formulation was released in vivo at a rate which was comparable to that observed in vitro. These studies demonstrate the potential for a sustained release, 14-day formulation for rhIGF-I.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Mark Merchant; Xiaolei Ma; Henry R. Maun; Zhong Zheng; Jing Peng; Mally Romero; Arthur Huang; Nai Ying Yang; Merry Nishimura; Joan M. Greve; Lydia Santell; Yu-Wen Zhang; Yanli Su; Dafna Kaufman; Karen Billeci; Elaine Mai; Barbara Moffat; Amy Lim; Eileen T. Duenas; Heidi S. Phillips; Hong Xiang; Judy Young; George F. Vande Woude; Mark S. Dennis; Dorothea Reilly; Ralph Schwall; Melissa A. Starovasnik; Robert A. Lazarus; Daniel G. Yansura
Significance Therapeutic antibodies have revolutionized the treatment of human disease. Despite these advances, antibody bivalency limits their utility against some targets. Here, we describe the development of a one-armed (monovalent) antibody, onartuzumab, targeting the receptor tyrosine kinase MET. While initial screening of bivalent antibodies produced agonists of MET, engineering them into monovalent antibodies produced antagonists instead. We explain the structural basis of the mechanism of action with the crystal structure of onartuzumab antigen-binding fragment in complex with MET and HGF-β. These discoveries have led to an additional antibody-based therapeutic option and shed light on the underpinnings of HGF/MET signaling. Binding of hepatocyte growth factor (HGF) to the receptor tyrosine kinase MET is implicated in the malignant process of multiple cancers, making disruption of this interaction a promising therapeutic strategy. However, targeting MET with bivalent antibodies can mimic HGF agonism via receptor dimerization. To address this limitation, we have developed onartuzumab, an Escherichia coli-derived, humanized, and affinity-matured monovalent monoclonal antibody against MET, generated using the knob-into-hole technology that enables the antibody to engage the receptor in a one-to-one fashion. Onartuzumab potently inhibits HGF binding and receptor phosphorylation and signaling and has antibody-like pharmacokinetics and antitumor activity. Biochemical data and a crystal structure of a ternary complex of onartuzumab antigen-binding fragment bound to a MET extracellular domain fragment, consisting of the MET Sema domain fused to the adjacent Plexins, Semaphorins, Integrins domain (MET Sema-PSI), and the HGF β-chain demonstrate that onartuzumab acts specifically by blocking HGF α-chain (but not β-chain) binding to MET. These data suggest a likely binding site of the HGF α-chain on MET, which when dimerized leads to MET signaling. Onartuzumab, therefore, represents the founding member of a class of therapeutic monovalent antibodies that overcomes limitations of antibody bivalency for targets impacted by antibody crosslinking.
Pharmaceutical Research | 1997
Jeffrey L. Cleland; Anne Mac; Brooks M. Boyd; Janet Yu-Feng Yang; Eileen T. Duenas; Douglas A. Yeung; Dennis Brooks; Chung Hsu; Herman Chu; Venkat R. Mukku; Andrew J. S. Jones
AbstractPurpose. The development of a sustained release formulation for recombinant human growth hormone (rhGH) as well as other proteins requires that the protein be stable at physiological conditions during its in vivo lifetime. Poly(lactic-co-glycolic acid) (PLGA) microspheres may provide an excellent sustained release formulation for proteins, if protein stability can be maintained. Methods. rhGH was encapsulated in PLGA microspheres using a double emulsion process. Protein released from the microspheres was assessed by several chromatrographic assays, circular dichroism, and a cell-based bioassay. The rates of aggregation, oxidation, diketopiperazine formation, and deamidation were then determined for rhGH released from PLGA microspheres and rhGH in solution (control) during incubation in isotonic buffer, pH 7.4 and 37°C. Results. rhGH PLGA formulations were produced with a low initial burst (<20%) and a continuous release of rhGH for 30 days. rhGH was released initially from PLGA microspheres in its native form as measured by several assays. In isotonic buffer, pH 7.4 and 37°C, the rates of rhGH oxidation, diketopiperazine formation, and deamidation in the PLGA microspheres were equivalent to the rhGH in solution, but aggregation (dimer formation) occured at a slightly faster rate for protein released from the PLGA microspheres. This difference in aggregation rate was likely due to the high protein concentration used in the encapsulation process. The rhGH released was biologically active throughout the incubation at these conditions which are equivalent to physiological ionic strength and pH. Conclusions. rhGH was successfully encapsulated and released in its fully bioactive form from PLGA microspheres over 30 days. The chemical degradation rates of rhGH were not affected by the PLGA microspheres, indicating that the internal environment of the microspheres was similar to the bulk solution. After administration, the microspheres should become fully hydrated in the subcutaneous space and should experience similar isotonic conditions and pH. Therefore, if a protein formulation provides stability in isotonic buffer, pH 7.4 and 37°C, it should allow for a safe and efficacious sustained release dosage form in PLGA microspheres.
Pharmaceutical Research | 1999
W. Mark Saltzman; Michele W. Mak; Melissa J. Mahoney; Eileen T. Duenas; Jeffrey L. Cleland
AbstractPurpose. Three different polymeric delivery systems, composed of either poly(ethylene-co-vinyl acetate) (EVAc) or poly(lactide-co-gly-colide) (PLGA), were used to administer recombinant human nerve growth factor (rhNGF) intracranially in rats. Methods. The delivery systems were characterized with respect to release kinetics, both in the brain and in well-stirred buffer solutions. Results. During incubation in buffered saline, the delivery systems released rhNGF in distinct patterns: sustained (EVAc), immediate (PLGA1), and delayed (PLGA2). One 10-mg delivery system was implanted in each rat and an ELISA technique was used to determine the amount of rhNGF in 1-mm coronal brain slices produced immediately after removal of the delivery system. High levels of rhNGF (as high as 60,000 ng in a brain slice of ∼50 μL) were recovered from the brain tissue at 1,2, and 4 weeks after implantation. With all three delivery systems, the amount of rhNGF in each brain slice decreased exponentially with distance from the implant site; the distance over which concentration decreased by 10-fold was 2−3 mm for all delivery systems. When rhNGF release was moderate (10 to 200 ng rhNGF/ day), the total amount of rhNGF in the brain increased linearly with release rate, suggesting an overall rate of rhNGF elimination of 0.4 hr−1 or a half-life of 1.7 hr. With higher release rates (500 to 50,000 ng rhNGF/day), total amounts of rhNGF in the brain were considerably higher than anticipated based on this rate of elimination. Conclusions. Polymeric controlled release can provide high, localized doses of rhNGF in the brain. All of the experimental data were consistent with penetration of rhNGF through the brain tissue with a diffusion coefficient ∼8 X 10−7 cm2/s, which is ∼50% of the diffusion coefficient in water.
Journal of Controlled Release | 1997
Jeffrey L. Cleland; Amy Lim; Lorena Barrón; Eileen T. Duenas; Michael F. Powell
The successful development of an AIDS vaccine will require formulations that not only invoke the desired immunological response, but also are stable and easy to administer. A single shot MN rgp120 vaccine formulation comprised of MN rgp120 encapsulated in poly (lactic-coglycolic) acid (PLGA) microspheres was developed to provide an in vivo autoboost of antigen. These formulations were designed to yield an in vivo autoboost at 1, 2, 3 or 4-6 months. In addition, PLGA microspheres containing the adjuvant, QS21, were also prepared to provide an in vivo autoboost concomitant with antigen. In guinea pigs, these formulations yielded higher anti-MN rgp120 and anti-V3 loop antibody titers than alum formulations that were administered at higher antigen doses. Different doses of encapsulated MN rgp120 provided a clear and well-defined dose response curve for both anti-MN rgp120 and anti-V3 loop antibody titers. When soluble QS21 was mixed with the encapsulated MN rgp120, the antibody titers were increased by a factor of 5 over the titers with encapsulated MN rgp120 alone. An additional fivefold increase in antibody titers was observed for guinea pigs immunized with encapsulated MN rgp120 and QS21 on the same microspheres. These results suggest that the adjuvant properties of QS21 can be increased by microencapsulation in PLGA. Furthermore, antibodies induced by these preparations neutralized the MN strain of HIV-1. The neutralization titers for sera from animals immunized with MN rgp120-PLGA and soluble QS21 were greater than the titers obtained from guinea pigs that were treated with MN rgp120 and soluble QS21 at the same dose. Overall, these studies validate the in vivo autoboost concept, reveal a method for improving the adjuvant properties of QS21, and indicate the potential of future single shot vaccine formulations.
Journal of Controlled Release | 1997
Jeffrey L. Cleland; Eileen T. Duenas; Ann L. Daugherty; Melinda Marian; Janet Yu-Feng Yang; Mark E. Wilson; Abigail C Celniker; Azin Shahzamani; Valerie Quarmby; Herman Chu; Venkat R. Mukku; Anne Mac; Melissa Roussakis; Nancy Gillette; Brooks M. Boyd; Douglas A. Yeung; Dennis Brooks; Yu-Fun Maa; Chung Hsu; Andrew J. S. Jones
The treatment of growth hormone deficiency requires the daily administration of recombinant human growth hormone (rhGH). Long lasting formulations of rhGH have the potential to increase patient compliance, improve quality of life, and increase the efficacy of rhGH (lower total dose). One approach to these formulations is the use of biodegradable, injectable microspheres consisting of poly(lactic-co-glycolic acid) (PLGA). rhGH PLGA microspheres (12% w/w rhGH) were produced using a conventional double emulsion process. Initial in vitro studies of these microspheres indicated an initial release of 35% (1 day) and a continuous release for 21 days. A single administration of these microspheres (200 mg) in rhesus monkeys resulted in an initial elevation of serum hGH levels followed by a lag phase (return to baseline) until day 12 and then a sustained level of hGH greater than 5 ng/ml for 30 days. Development of improved in vitro release methods yielded release profiles comparable to those observed in vivo as determined from a detailed pharmacokinetic analysis of the hGH serum data. Serum hGH concentrations at or above 5 ng/ml provided a maximal response in two primary indicators of hGH biological activity, insulin-like growth factor-I (IGF-I) and IGF-binding protein 3. Further assessment of serum samples in an in vitro cell-based assay indicated that the rhGH released in vivo from the microspheres was bioactive. The rhGH PLGA formulations were well tolerated with mild to moderate inflammation and fibrosis. One of four animals developed a low titer anti-hGH antibody response, but transgenic mice expressing hGH did not develop an immune response to rhGH released from the PLGA microspheres. Therefore, this formulation had a low immunogenicity similar to the commercial rhGH formulation (Nutropin®). Overall, these studies demonstrated that a single administration of rhGH PLGA microspheres provide a prolonged release of bioactive rhGH that is well tolerated. With the improved in vitro release methods, future rhGH PLGA formulations may be designed without a lag phase to yield a one month continuous release of bioactive rhGH.