Ekaterina Baibuz
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ekaterina Baibuz.
ACS Nano | 2016
Junlei Zhao; Ekaterina Baibuz; Jerome Vernieres; Panagiotis Grammatikopoulos; Ville Jansson; Morten Nagel; Stephan Steinhauer; Mukhles Sowwan; A. Kuronen; K. Nordlund; Flyura Djurabekova
In this work, we study the formation mechanisms of iron nanoparticles (Fe NPs) grown by magnetron sputtering inert gas condensation and emphasize the decisive kinetics effects that give rise specifically to cubic morphologies. Our experimental results, as well as computer simulations carried out by two different methods, indicate that the cubic shape of Fe NPs is explained by basic differences in the kinetic growth modes of {100} and {110} surfaces rather than surface formation energetics. Both our experimental and theoretical investigations show that the final shape is defined by the combination of the condensation temperature and the rate of atomic deposition onto the growing nanocluster. We, thus, construct a comprehensive deposition rate-temperature diagram of Fe NP shapes and develop an analytical model that predicts the temporal evolution of these properties. Combining the shape diagram and the analytical model, morphological control of Fe NPs during formation is feasible; as such, our method proposes a roadmap for experimentalists to engineer NPs of desired shapes for targeted applications.
Nanotechnology | 2016
Ville Jansson; Ekaterina Baibuz; Flyura Djurabekova
Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the [Formula: see text] crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 [Formula: see text] at room temperature. Moreover, the nanotips built up along the [Formula: see text] crystallographic directions were found to be significantly more stable than those oriented in the [Formula: see text] or [Formula: see text] crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.
Computational Materials Science | 2018
Ekaterina Baibuz; Simon Vigonski; Jyri Lahtinen; Junlei Zhao; Ville Jansson; Vahur Zadin; Flyura Djurabekova
Abstract Atomistic rigid lattice Kinetic Monte Carlo is an efficient method for simulating nano-objects and surfaces at timescales much longer than those accessible by molecular dynamics. A laborious part of constructing any Kinetic Monte Carlo model is, however, to calculate all migration barriers that are needed to give the probabilities for any atom jump event to occur in the simulations. One of the common methods of barrier calculations is Nudged Elastic Band. The number of barriers needed to fully describe simulated systems is typically between hundreds of thousands and millions. Calculations of such a large number of barriers of various processes is far from trivial. In this paper, we will discuss the challenges arising during barriers calculations on a surface and present a systematic and reliable tethering force approach to construct a rigid lattice barrier parameterization of face-centred and body-centred cubic metal lattices. We have produced several different barrier sets for Cu and for Fe that can be used for KMC simulations of processes on arbitrarily rough surfaces. The sets are published as Data in Brief articles and available for the use.
Nanotechnology | 2018
Simon Vigonski; Ville Jansson; Sergei Vlassov; Boris Polyakov; Ekaterina Baibuz; Sven Oras; Alvo Aabloo; Flyura Djurabekova; Vahur Zadin
Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 °C, 400 °C, 600 °C and 700 °C) during a time period of 10 min. We show that nanowires are especially prone to fragmentation around junctions and crossing points even at comparatively low temperatures. The fragmentation process is highly temperature dependent and the junction region breaks up at a lower temperature than a single nanowire. We develop a gold parametrization for kinetic Monte Carlo simulations and demonstrate the surface diffusion origin of the nanowire junction fragmentation. We show that nanowire fragmentation starts at the junctions with high reliability and propose that aligning nanowires in a regular grid could be used as a technique for fabricating arrays of nanodots.
Data in Brief | 2018
Ekaterina Baibuz; Simon Vigonski; Jyri Lahtinen; Junlei Zhao; Ville Jansson; Vahur Zadin; Flyura Djurabekova
Atomistic rigid lattice Kinetic Monte Carlo (KMC) is an efficient method for simulating nano-objects and surfaces at timescales much longer than those accessible by molecular dynamics. A laborious and non-trivial part of constructing any KMC model is, however, to calculate all migration barriers that are needed to give the probabilities for any atom jump event to occur in the simulations. We have calculated three data sets of migration barriers for Cu self-diffusion with two different methods. The data sets were specifically calculated for rigid lattice KMC simulations of copper self-diffusion on arbitrarily rough surfaces, but can be used for KMC simulations of bulk diffusion as well.
Data in Brief | 2018
Ekaterina Baibuz; Simon Vigonski; Jyri Lahtinen; Junlei Zhao; Ville Jansson; Vahur Zadin; Flyura Djurabekova
Atomistic rigid lattice Kinetic Monte Carlo (KMC) is an efficient method for simulating nano-objects and surfaces at timescales much longer than those accessible by molecular dynamics. A laborious and non-trivial part of constructing any KMC model is, however, to calculate all migration barriers that are needed to give the probabilities for any atom jump event to occur in the simulations. We calculated three data sets of migration barriers for Fe self-diffusion: barriers of first nearest neighbour jumps, second nearest neighbours hop-on jumps on the Fe {100} surface and a set of barriers of the diagonal exchange processes for various cases of the local atomic environments within the 2nn coordination shell.
international vacuum nanoelectronics conference | 2017
Ville Jansson; Ekaterina Baibuz; Andreas Kyritsakis; Flyura Djurabekova
Strong electric fields are known to create biased adatom migration on metallic surfaces. We present a Kinetic Monte Carlo model that can simulate adatom migration on a tungsten (W) surface in electric fields. We validate our model by using it to calculate the drift velocity of the adatom at different fields and temperature and comparing the results with experimental data from the literature. We obtain excellent agreement.
international vacuum nanoelectronics conference | 2015
Ville Jansson; Ekaterina Baibuz; Flyura Djurabekova
In this work we study the long-term stability of surface nano-structures that may function as field emitters. For this purpose, we have developed a new Kinetic Monte Carlo model for the surface diffusion. We have found that copper tips with an aspect ratio of about 8 may be stable for hours at room temperature, but collapses already within a microsecond at temperatures above 800 K.
arXiv: Materials Science | 2015
Ville Jansson; Ekaterina Baibuz; Flyura Djurabekova
arXiv: Materials Science | 2018
Andreas Kyritsakis; Ekaterina Baibuz; Ville Jansson; Flyura Djurabekova