Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ville Jansson is active.

Publication


Featured researches published by Ville Jansson.


Journal of Nuclear Materials | 2013

Simulation of the nanostructure evolution under irradiation in Fe–C alloys

Ville Jansson; Lorenzo Malerba

Abstract Neutron irradiation induces in steels nanostructural changes, which are at the origin of the mechanical degradation that these materials experience during operation in nuclear power plants. Some of these effects can be studied by using as model alloy the iron–carbon system. The Object Kinetic Monte Carlo technique has proven capable of simulating in a realistic and quantitatively reliable way a whole irradiation process. We have developed a model for simulating Fe–C systems using a physical description of the properties of vacancy and self-interstitial atom (SIA) clusters, based on a selection of the latest data from atomistic studies and other available experimental and theoretical work from the literature. Based on these data, the effect of carbon on radiation defect evolution has been largely understood in terms of formation of immobile complexes with vacancies that in turn act as traps for SIA clusters. It is found that this effect can be introduced using generic traps for SIA and vacancy clusters, with a binding energy that depends on the size of the clusters, also chosen on the basis on previously performed atomistic studies. The model proved suitable to reproduce the results of low (


ACS Nano | 2016

Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation

Junlei Zhao; Ekaterina Baibuz; Jerome Vernieres; Panagiotis Grammatikopoulos; Ville Jansson; Morten Nagel; Stephan Steinhauer; Mukhles Sowwan; A. Kuronen; K. Nordlund; Flyura Djurabekova

In this work, we study the formation mechanisms of iron nanoparticles (Fe NPs) grown by magnetron sputtering inert gas condensation and emphasize the decisive kinetics effects that give rise specifically to cubic morphologies. Our experimental results, as well as computer simulations carried out by two different methods, indicate that the cubic shape of Fe NPs is explained by basic differences in the kinetic growth modes of {100} and {110} surfaces rather than surface formation energetics. Both our experimental and theoretical investigations show that the final shape is defined by the combination of the condensation temperature and the rate of atomic deposition onto the growing nanocluster. We, thus, construct a comprehensive deposition rate-temperature diagram of Fe NP shapes and develop an analytical model that predicts the temporal evolution of these properties. Combining the shape diagram and the analytical model, morphological control of Fe NPs during formation is feasible; as such, our method proposes a roadmap for experimentalists to engineer NPs of desired shapes for targeted applications.


Philosophical Magazine | 2010

Simulation of cascades in tungsten–helium

N. Juslin; Ville Jansson; K. Nordlund

Helium (He) is present in fusion reactor wall materials, and its effect on radiation damage must be taken into account. The effect of He on displacement cascades in tungsten (W) has been studied using molecular dynamics simulations. Three different W–W potentials were compared and found to differ, especially for the clustering of the vacancies formed in the cascades. While there are differences in the amounts of damage depending on the potential, the overall effect of He in interstitial positions was to increase the amount of damage, while He in substitutional positions reduces it, due to the effect He has on the recombination of tungsten interstititals.


Nanotechnology | 2016

Long-term stability of Cu surface nanotips

Ville Jansson; Ekaterina Baibuz; Flyura Djurabekova

Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the [Formula: see text] crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 [Formula: see text] at room temperature. Moreover, the nanotips built up along the [Formula: see text] crystallographic directions were found to be significantly more stable than those oriented in the [Formula: see text] or [Formula: see text] crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.


Journal of Nuclear Materials | 2013

Sink strength calculations of dislocations and loops using OKMC

Ville Jansson; Lorenzo Malerba; A. De Backer; C.S. Becquart; C. Domain

Abstract We calculate the sink strength of dislocations and toroidal absorbers using Object Kinetic Monte Carlo and compare with the theoretical expressions. We get good agreement for dislocations and loop-shaped absorbers of 3D migrating defects, provided that the volume fraction is low, and fair agreements for dislocations with 1D migrating defects. The master curve for the 3D to 1D transition is well reproduced with loop-shaped absorbers and fairly well with dislocations. We conclude that, on the one hand, the master curve is correct for a wide range of sinks and that, on the other, OKMC techniques inherently take correctly into account the strengths of sinks of any shape, provided that an effective way of appropriately inserting the sinks to be studied can be found.


Journal of Nuclear Materials | 2014

OKMC simulations of Fe–C systems under irradiation: Sensitivity studies

Ville Jansson; Lorenzo Malerba

Abstract This paper continues our previous work on a nanostructural evolution model for Fe–C alloys under irradiation, using Object Kinetic Monte Carlo modeling techniques. We here present a number of sensitivity studies of parameters of the model, such as the carbon content in the material, represented by generic traps for point defects, the importance of traps, the size dependence of traps and the effect of the dose rate.


Computational Materials Science | 2018

Migration barriers for surface diffusion on a rigid lattice: Challenges and solutions

Ekaterina Baibuz; Simon Vigonski; Jyri Lahtinen; Junlei Zhao; Ville Jansson; Vahur Zadin; Flyura Djurabekova

Abstract Atomistic rigid lattice Kinetic Monte Carlo is an efficient method for simulating nano-objects and surfaces at timescales much longer than those accessible by molecular dynamics. A laborious part of constructing any Kinetic Monte Carlo model is, however, to calculate all migration barriers that are needed to give the probabilities for any atom jump event to occur in the simulations. One of the common methods of barrier calculations is Nudged Elastic Band. The number of barriers needed to fully describe simulated systems is typically between hundreds of thousands and millions. Calculations of such a large number of barriers of various processes is far from trivial. In this paper, we will discuss the challenges arising during barriers calculations on a surface and present a systematic and reliable tethering force approach to construct a rigid lattice barrier parameterization of face-centred and body-centred cubic metal lattices. We have produced several different barrier sets for Cu and for Fe that can be used for KMC simulations of processes on arbitrarily rough surfaces. The sets are published as Data in Brief articles and available for the use.


Nanotechnology | 2018

Au nanowire junction breakup through surface atom diffusion

Simon Vigonski; Ville Jansson; Sergei Vlassov; Boris Polyakov; Ekaterina Baibuz; Sven Oras; Alvo Aabloo; Flyura Djurabekova; Vahur Zadin

Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 °C, 400 °C, 600 °C and 700 °C) during a time period of 10 min. We show that nanowires are especially prone to fragmentation around junctions and crossing points even at comparatively low temperatures. The fragmentation process is highly temperature dependent and the junction region breaks up at a lower temperature than a single nanowire. We develop a gold parametrization for kinetic Monte Carlo simulations and demonstrate the surface diffusion origin of the nanowire junction fragmentation. We show that nanowire fragmentation starts at the junctions with high reliability and propose that aligning nanowires in a regular grid could be used as a technique for fabricating arrays of nanodots.


Data in Brief | 2018

Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Cu self-diffusion via first nearest neighbour atomic jumps

Ekaterina Baibuz; Simon Vigonski; Jyri Lahtinen; Junlei Zhao; Ville Jansson; Vahur Zadin; Flyura Djurabekova

Atomistic rigid lattice Kinetic Monte Carlo (KMC) is an efficient method for simulating nano-objects and surfaces at timescales much longer than those accessible by molecular dynamics. A laborious and non-trivial part of constructing any KMC model is, however, to calculate all migration barriers that are needed to give the probabilities for any atom jump event to occur in the simulations. We have calculated three data sets of migration barriers for Cu self-diffusion with two different methods. The data sets were specifically calculated for rigid lattice KMC simulations of copper self-diffusion on arbitrarily rough surfaces, but can be used for KMC simulations of bulk diffusion as well.


Data in Brief | 2018

Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Fe self-diffusion

Ekaterina Baibuz; Simon Vigonski; Jyri Lahtinen; Junlei Zhao; Ville Jansson; Vahur Zadin; Flyura Djurabekova

Atomistic rigid lattice Kinetic Monte Carlo (KMC) is an efficient method for simulating nano-objects and surfaces at timescales much longer than those accessible by molecular dynamics. A laborious and non-trivial part of constructing any KMC model is, however, to calculate all migration barriers that are needed to give the probabilities for any atom jump event to occur in the simulations. We calculated three data sets of migration barriers for Fe self-diffusion: barriers of first nearest neighbour jumps, second nearest neighbours hop-on jumps on the Fe {100} surface and a set of barriers of the diagonal exchange processes for various cases of the local atomic environments within the 2nn coordination shell.

Collaboration


Dive into the Ville Jansson's collaboration.

Top Co-Authors

Avatar

Flyura Djurabekova

Helsinki Institute of Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jyri Lahtinen

Helsinki Institute of Physics

View shared research outputs
Top Co-Authors

Avatar

Junlei Zhao

Helsinki Institute of Physics

View shared research outputs
Top Co-Authors

Avatar

Lorenzo Malerba

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

K. Nordlund

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge