Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ekaterina I. Finkina is active.

Publication


Featured researches published by Ekaterina I. Finkina.


FEBS Journal | 2009

A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif.

Tatyana I. Odintsova; Alexander A. Vassilevski; Anna A. Slavokhotova; Alexander Kh. Musolyamov; Ekaterina I. Finkina; Natalia V. Khadeeva; Eugene A. Rogozhin; Tatyana V. Korostyleva; Vitalii A. Pukhalsky; Eugene V. Grishin; Tsezi A. Egorov

Two forms of a novel antimicrobial peptide (AMP), named WAMP‐1a and WAMP‐1b, that differ by a single C‐terminal amino acid residue and belong to a new structural type of plant AMP were purified from seeds of Triticum kiharae Dorof. et Migusch. Although WAMP‐1a and WAMP‐1b share similarity with hevein‐type peptides, they possess 10 cysteine residues arranged in a unique cysteine motif which is distinct from those described previously for plant AMPs, but is characteristic of the chitin‐binding domains of cereal class I chitinases. An unusual substitution of a serine for a glycine residue in the chitin‐binding domain was detected for the first time in hevein‐like polypeptides. Recombinant WAMP‐1a was successfully produced in Escherichia coli. This is the first case of high‐yield production of a cysteine‐rich plant AMP from a synthetic gene. Assays of recombinant WAMP‐1a activity showed that the peptide possessed high broad‐spectrum inhibitory activity against diverse chitin‐containing and chitin‐free pathogens, with IC50 values in the micromolar range. The discovery of a new type of AMP active against structurally dissimilar microorganisms implies divergent modes of action and discloses the complexity of plant–microbe interactions.


Biochemistry | 2010

Isolation, Structure Elucidation, and Synergistic Antibacterial Activity of a Novel Two-Component Lantibiotic Lichenicidin from Bacillus licheniformis VK21

Zakhar O. Shenkarev; Ekaterina I. Finkina; Elina K. Nurmukhamedova; Sergey V. Balandin; Konstantin S. Mineev; Kirill D. Nadezhdin; Zoya A. Yakimenko; Andrey A. Tagaev; Yuri V. Temirov; Alexander S. Arseniev; Tatiana V. Ovchinnikova

A novel synergetic lantibiotic pair, Lchalpha (3249.51 Da) and Lchbeta (3019.36 Da), termed lichenicidin VK21, was isolated from the producer strain Bacillus licheniformis VK21. Chemical and spatial structures of Lchalpha and Lchbeta were determined. Each peptide contains 31 amino acid residues linked by 4 intramolecular thioether bridges and the N-terminal 2-oxobutyryl group. Spatial structures of Lchalpha and Lchbeta were studied by NMR spectroscopy in methanol solution. The Lchalpha peptide displays structural homology with mersacidin-like lantibiotics and involves relatively well-structured N- and C-terminal domains connected by a flexible loop stabilized by a thioether bridge Ala11-S-Ala21. In contrast, the Lchbeta peptide represents a prolonged hydrophobic alpha-helix flanked with more flexible N- and C-terminal domains. A lantibiotic cluster of the Bacillus licheniformis VK21 genome which comprises the structural genes, lchA1 and lchA2, encoding the lantibiotics precursors, as well as the gene of a modifying enzyme lchM1, was amplified and sequenced. The mature peptides, Lchalpha and Lchbeta, interact synergistically to possess antibiotic activity against Gram-positive bacteria within a nanomolar concentration range, though the individual peptides were shown to be active at micromolar concentrations. Our results afford molecular insight into the mechanism of lichenicidin VK21 action.


Biochemical and Biophysical Research Communications | 2008

A novel defensin from the lentil Lens culinaris seeds.

Ekaterina I. Finkina; Elena I. Shramova; Andrey A. Tagaev; Tatiana V. Ovchinnikova

A novel 47-residue plant defensin was purified from germinated seeds of the lentil Lens culinaris by ammonium sulfate precipitation, gel filtration, chromatography, and RP-HPLC. The molecular mass (5440.41Da) and complete amino acid sequence (KTCENLSDSFKGPCIPDGNCNKHCKEKEHLLSGRCRDDFRCWCTRNC) of defensin, termed Lc-def, were determined. Lc-def has eight cysteines forming four disulfide bonds. The total RNA was isolated from lentil germinated seeds, RT-PCR and subsequent cloning were performed, and cDNA was sequenced. A 74-residue predefensin contains a putative signal peptide (27 amino acid) and a mature protein. Lc-def shows high sequence homology with legumes defensins, exhibits an activity against Aspergillus niger, but does not inhibit proteolytic enzymes.


Biochemistry | 2007

Purification and primary structure of novel lipid transfer proteins from germinated lentil (Lens culinaris) seeds

Ekaterina I. Finkina; Sergey V. Balandin; Marina V. Serebryakova; N. A. Potapenko; Andrey A. Tagaev; T. V. Ovchinnikova

A subfamily of eight novel lipid transfer proteins designated as Lc-LTP1-8 was found in the lentil Lens culinaris. Lc-LTP2, Lc-LTP4, Lc-LTP7, and Lc-LTP8 were purified from germinated lentil seeds, and their molecular masses (9268.7, 9282.7, 9121.5, 9135.5 daltons) and complete amino acid sequences were determined. The purified proteins consist of 92–93 amino acid residues, have four disulfide bonds, and inhibit growth of Agrobacterium tumefaciens. Total RNA was isolated from germinated lentil seeds, RT-PCR and cloning were performed, and the cDNAs of six LTPs were sequenced. Precursor 116–118-residue proteins with 24–25-residue signal peptides were found, and two of them are purified proteins Lc-LTP2 and Lc-LTP4.


Biochemical and Biophysical Research Communications | 2013

Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

Albina K. Gizatullina; Ekaterina I. Finkina; Konstantin S. Mineev; Daria N. Melnikova; Ivan V. Bogdanov; Irina N. Telezhinskaya; Sergey V. Balandin; Zakhar O. Shenkarev; Alexander S. Arseniev; Tatiana V. Ovchinnikova

Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600Å(3)). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.


Biochemical and Biophysical Research Communications | 2014

Heterologous expression and solution structure of defensin from lentil Lens culinaris

Zakhar O. Shenkarev; Albina K. Gizatullina; Ekaterina I. Finkina; Ekaterina A. Alekseeva; Sergey V. Balandin; Konstantin S. Mineev; Alexander S. Arseniev; Tatiana V. Ovchinnikova

A new defensin Lc-def, isolated from germinated seeds of the lentil Lens culinaris, has molecular mass 5440.4Da and consists of 47 amino acid residues. Lc-def and its (15)N-labeled analog were overexpressed in Escherichia coli. Antimicrobial activity of the recombinant protein was examined, and its spatial structure, dynamics, and interaction with lipid vesicles were studied by NMR spectroscopy. It was shown that Lc-def is active against fungi, but does not inhibit the growth of Gram-positive and Gram-negative bacteria. The peptide is monomeric in aqueous solution and contains one α-helix and triple-stranded β-sheet, which form cysteine-stabilized αβ motif (CSαβ) previously found in other plant defensins. The sterically neighboring loop1 and loop3 protrude from the defensin core and demonstrate significant mobility on the μs-ms timescale. Lc-def does not bind to the zwitterionic lipid (POPC) vesicles but interacts with the partially anionic (POPC/DOPG, 7:3) membranes under low-salt conditions. The Lc-def antifungal activity might be mediated through electrostatic interaction with anionic lipid components of fungal membranes.


BMC Plant Biology | 2016

A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties

Ivan V. Bogdanov; Zakhar O. Shenkarev; Ekaterina I. Finkina; Daria N. Melnikova; Eugene I. Rumynskiy; Alexander S. Arseniev; Tatiana V. Ovchinnikova

BackgroundPlant lipid transfer proteins (LTPs) assemble a family of small (7–9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties.ResultsThree novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly 13C,15N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å3). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity.ConclusionsFor the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps-LTP1 displayed a high thermal and digestive proteolytic resistance proper for food allergens. The reported structural and immunological findings seem to describe Ps-LTP1 as potential cross-reactive allergen in LTP-sensitized patients, mostly Pru p 3+ ones. Similarly to allergenic LTPs the potential IgE-binding epitope of Ps-LTP1 is located near the proposed entrance into internal cavity and could be involved in lipid-binding.


Biochemistry | 2017

Ligand Binding Properties of the Lentil Lipid Transfer Protein: Molecular Insight into the Possible Mechanism of Lipid Uptake

Zakhar O. Shenkarev; Daria N. Melnikova; Ekaterina I. Finkina; Stanislav V. Sukhanov; Ivan A. Boldyrev; Albina K. Gizatullina; Konstantin S. Mineev; Alexander S. Arseniev; Tatiana V. Ovchinnikova

The lentil lipid transfer protein, designated as Lc-LTP2, was isolated from Lens culinaris seeds. The protein belongs to the LTP1 subfamily and consists of 93 amino acid residues. Its spatial structure includes four α-helices (H1-H4) and a long C-terminal tail. Here, we report the ligand binding properties of Lc-LTP2. The fluorescent 2-p-toluidinonaphthalene-6-sulfonate binding assay revealed that the affinity of Lc-LTP2 for saturated and unsaturated fatty acids was enhanced with a decrease in acyl-chain length. Measurements of boundary potential in planar lipid bilayers and calcein dye leakage in vesicular systems revealed preferential interaction of Lc-LTP2 with the negatively charged membranes. Lc-LTP2 more efficiently transferred anionic dimyristoylphosphatidylglycerol (DMPG) than zwitterionic dimyristoylphosphatidylcholine. Nuclear magnetic resonance experiments confirmed the higher affinity of Lc-LTP2 for anionic lipids and those with smaller volumes of hydrophobic chains. The acyl chains of the bound lysopalmitoylphosphatidylglycerol (LPPG), DMPG, or dihexanoylphosphatidylcholine molecules occupied the internal hydrophobic cavity, while their headgroups protruded into the aqueous environment between helices H1 and H3. The spatial structure and backbone dynamics of the Lc-LTP2-LPPG complex were determined. The internal cavity was expanded from ∼600 to ∼1000 Å3 upon the ligand binding. Another entrance into the internal cavity, restricted by the H2-H3 interhelical loop and C-terminal tail, appeared to be responsible for the attachment of Lc-LTP2 to the membrane or micelle surface and probably played an important role in the lipid uptake determining the ligand specificity. Our results confirmed the previous assumption regarding the membrane-mediated antimicrobial action of Lc-LTP2 and afforded molecular insight into its biological role in the plant.


Current Medicinal Chemistry | 2017

Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens

Ekaterina I. Finkina; Daria N. Melnikova; Ivan V. Bogdanov; Tatiana V. Ovchinnikova

Pathogenesis-related (PR) proteins are components of innate immunity system in plants. They play an important role in plant defense against pathogens. Lipid transfer proteins (LTPs) and Bet v 1 homologs comprise of two separate families of PR-proteins. Both LTPs (PR-14) and Bet v 1 homologs (PR-10) are multifunctional small proteins involving in plant response to abiotic and biotic stress conditions. The representatives of these PR-protein families do not show any sequence similarity but have other common biochemical features such as low molecular masses, the presence of hydrophobic cavities, ligand binding properties, and antimicrobial activities. Besides, many members of PR-10 and PR-14 families are ubiquitous plant panallergens which are able to cause sensitization of human immune system and crossreactive allergic reactions to plant food and pollen. This review is aimed at comparative analysis of structure-functional and allergenic properties of the PR-10 and PR-14 families, as well as prospects for their medicinal application.


Journal of Peptide Science | 2016

A novel lipid transfer protein from the dill Anethum graveolens L.: isolation, structure, heterologous expression, and functional characteristics.

Daria N. Melnikova; Konstantin S. Mineev; Ekaterina I. Finkina; Alexander S. Arseniev; Tatiana V. Ovchinnikova

A novel lipid transfer protein, designated as Ag‐LTP, was isolated from aerial parts of the dill Anethum graveolens L. Structural, antimicrobial, and lipid binding properties of the protein were studied. Complete amino acid sequence of Ag‐LTP was determined. The protein has molecular mass of 9524.4 Da, consists of 93 amino acid residues including eight cysteines forming four disulfide bonds. The recombinant Ag‐LTP was overexpressed in Escherichia coli and purified. NMR investigation shows that the Ag‐LTP spatial structure contains four α‐helices, forming the internal hydrophobic cavity, and a long C‐terminal tail. The measured volume of the Ag‐LTP hydrophobic cavity is equal to ~800 A3, which is much larger than those of other plant LTP1s. Ag‐LTP has weak antifungal activity and unpronounced lipid binding specificity but effectively binds plant hormone jasmonic acid. Our results afford further molecular insight into biological functions of LTP in plants. Copyright

Collaboration


Dive into the Ekaterina I. Finkina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergey V. Balandin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Daria N. Melnikova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey A. Tagaev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ivan V. Bogdanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge