Ekaterina Revenkova
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ekaterina Revenkova.
Nature Cell Biology | 2004
Ekaterina Revenkova; Maureen Eijpe; Christa Heyting; Craig A. Hodges; Patricia A. Hunt; Bodo Liebe; Harry Scherthan; Rolf Jessberger
Sister chromatid cohesion ensures the faithful segregation of chromosomes in mitosis and in both meiotic divisions. Meiosis-specific components of the cohesin complex, including the recently described SMC1 isoform SMC1β, were suggested to be required for meiotic sister chromatid cohesion and DNA recombination. Here we show that SMC1β-deficient mice of both sexes are sterile. Male meiosis is blocked in pachytene; female meiosis is highly error-prone but continues until metaphase II. Prophase axial elements (AEs) are markedly shortened, chromatin extends further from the AEs, chromosome synapsis is incomplete, and sister chromatid cohesion in chromosome arms and at centromeres is lost prematurely. In addition, crossover-associated recombination foci are absent or reduced, and meiosis-specific perinuclear telomere arrangements are impaired. Thus, SMC1β has a key role in meiotic cohesion, the assembly of AEs, synapsis, recombination, and chromosome movements.
Nature Genetics | 2005
Craig A. Hodges; Ekaterina Revenkova; Rolf Jessberger; Terry Hassold; Patricia A. Hunt
Mitotic chromosome segregation is facilitated by the cohesin complex, which maintains physical connections between sister chromatids until anaphase. Meiotic cell division is considerably more complex, as cohesion must be released sequentially to facilitate orderly segregation of chromosomes at both meiosis I and meiosis II. This necessitates meiosis-specific cohesin components; recent studies in rodents suggest that these influence chromosome behavior during both cell division and meiotic prophase. To elucidate the role of the meiosis-specific cohesin SMC1β (encoded by Smc1l2) in oogenesis, we carried out meiotic studies of female SMC1β-deficient mice. Our results provide the first direct evidence that SMC1β acts as a chiasma binder in mammals, stabilizing sites of exchange until anaphase. Additionally, our observations support the hypothesis that deficient cohesion is an underlying cause of human age-related aneuploidy.
Journal of Cell Biology | 2003
Maureen Eijpe; Hildo H. Offenberg; Rolf Jessberger; Ekaterina Revenkova; Christa Heyting
In meiotic prophase, the sister chromatids of each chromosome develop a common axial element (AE) that is integrated into the synaptonemal complex (SC). We analyzed the incorporation of sister chromatid cohesion proteins (cohesins) and other AE components into AEs. Meiotic cohesin REC8 appeared shortly before premeiotic S phase in the nucleus and formed AE-like structures (REC8-AEs) from premeiotic S phase on. Subsequently, meiotic cohesin SMC1β, cohesin SMC3, and AE proteins SCP2 and SCP3 formed dots along REC8-AEs, which extended and fused until they lined REC8-AEs along their length. In metaphase I, SMC1β, SMC3, SCP2, and SCP3 disappeared from the chromosome arms and accumulated around the centromeres, where they stayed until anaphase II. In striking contrast, REC8 persisted along the chromosome arms until anaphase I and near the centromeres until anaphase II. We propose that REC8 provides a basis for AE formation and that the first steps in AE assembly do not require SMC1β, SMC3, SCP2, and SCP3. Furthermore, SMC1β, SMC3, SCP2, and SCP3 cannot provide arm cohesion during metaphase I. We propose that REC8 then provides cohesion. RAD51 and/or DMC1 coimmunoprecipitates with REC8, suggesting that REC8 may also provide a basis for assembly of recombination complexes.
Molecular and Cellular Biology | 2001
Ekaterina Revenkova; M. Eijpe; Christa Heyting; B. Gross; Rolf Jessberger
ABSTRACT Structural maintenance of chromosomes (SMC) proteins fulfill pivotal roles in chromosome dynamics. In yeast, the SMC1-SMC3 heterodimer is required for meiotic sister chromatid cohesion and DNA recombination. Little is known, however, about mammalian SMC proteins in meiotic cells. We have identified a novel SMC protein (SMC1β), which—except for a unique, basic, DNA binding C-terminal motif—is highly homologous to SMC1 (which may now be called SMC1α) and is not present in the yeast genome. SMC1β is specifically expressed in testes and coimmunoprecipitates with SMC3 from testis nuclear extracts, but not from a variety of somatic cells. This establishes for mammalian cells the concept of cell-type- and tissue-specific SMC protein isoforms. Analysis of testis sections and chromosome spreads of various stages of meiosis revealed localization of SMC1β along the axial elements of synaptonemal complexes in prophase I. Most SMC1β dissociates from the chromosome arms in late-pachytene-diplotene cells. However, SMC1β, but not SMC1α, remains chromatin associated at the centromeres up to metaphase II. Thus, SMC1β and not SMC1α is likely involved in maintaining cohesion between sister centromeres until anaphase II.
Current Biology | 2010
Ekaterina Revenkova; Kathleen Herrmann; Caroline Adelfalk; Rolf Jessberger
To ensure correct meiotic chromosome segregation, sister chromatid cohesion (SCC) needs to be maintained from its establishment in prophase I oocytes before birth until continuation of meiosis into metaphase II upon oocyte maturation in the adult. Aging human oocytes suffer a steep increase in chromosome missegregation and aneuploidy, which may be caused by loss of SCC through slow deterioration of cohesin [1-3]. This hypothesis assumes that cohesin expression in embryonic oocytes is sufficient to provide adequate long-term SCC. With increasing age, mouse oocytes deficient in the meiosis-specific cohesin SMC1β massively lose SCC and chiasmata [3, 4]. To test the deterioration hypothesis, we specifically and highly efficiently inactivated the mouse Smc1β gene at the primordial follicle stage shortly after birth, when oocytes had just entered meiosis I dictyate arrest. In the adult, however, irrespective of oocyte age, chiasma positions and SCC are normal. Frequency and size of litters prove full fertility even in aged females. Thus, SMC1β cohesin needs only be expressed during prophase I prior to the primordial follicle stage to ensure SCC up to advanced age of mice.
Journal of Cell Biology | 2008
Ivana Novak; Hong Wang; Ekaterina Revenkova; Rolf Jessberger; Harry Scherthan; Christer Höög
Meiotic chromosomes consist of proteinaceous axial structures from which chromatin loops emerge. Although we know that loop density along the meiotic chromosome axis is conserved in organisms with different genome sizes, the basis for the regular spacing of chromatin loops and their organization is largely unknown. We use two mouse model systems in which the postreplicative meiotic chromosome axes in the mutant oocytes are either longer or shorter than in wild-type oocytes. We observe a strict correlation between chromosome axis extension and a general and reciprocal shortening of chromatin loop size. However, in oocytes with a shorter chromosome axis, only a subset of the chromatin loops is extended. We find that the changes in chromatin loop size observed in oocytes with shorter or longer chromosome axes depend on the structural maintenance of chromosomes 1β (Smc1β), a mammalian chromosome–associated meiosis-specific cohesin. Our results suggest that in addition to its role in sister chromatid cohesion, Smc1β determines meiotic chromatin loop organization.
Human Molecular Genetics | 2009
Ekaterina Revenkova; Maria Luisa Focarelli; Lucia Susani; Marianna Paulis; Maria Teresa Bassi; Linda Mannini; Annalisa Frattini; Domenico Delia; Ian D. Krantz; Paolo Vezzoni; Rolf Jessberger; Antonio Musio
Cornelia de Lange syndrome (CdLS) is a clinically heterogeneous developmental disorder characterized by facial dysmorphia, upper limb malformations, growth and cognitive retardation. Mutations in the sister chromatid cohesion factor genes NIPBL, SMC1A and SMC3 are present in approximately 65% of CdLS patients. In addition to their canonical roles in chromosome segregation, the cohesin proteins are involved in other biological processes such as regulation of gene expression, DNA repair and maintenance of genome stability. To gain insights into the molecular basis of CdLS, we analyzed the affinity of mutated SMC1A and SMC3 hinge domains for DNA. Mutated hinge dimers bind DNA with higher affinity than wild-type proteins. SMC1A- and SMC3-mutated CdLS cell lines display genomic instability and sensitivity to ionizing radiation and interstrand crosslinking agents. We propose that SMC1A and SMC3 CdLS mutations affect the dynamic association between SMC proteins and DNA, providing new clues to the underlying molecular cause of CdLS.
Journal of Cell Biology | 2009
Caroline Adelfalk; Johannes Janschek; Ekaterina Revenkova; Cornelia Blei; Bodo Liebe; Eva Göb; Manfred Alsheimer; Ricardo Benavente; Esther de Boer; Ivana Novak; Christer Höög; Harry Scherthan; Rolf Jessberger
Telomeres fail to attach to the nuclear envelope and lose structural integrity in cells lacking SMC1β.
Chromosoma | 2006
Ekaterina Revenkova; Rolf Jessberger
Recent progress in elucidating the function of synaptonemal complex (SC) proteins and of cohesins in meiocytes made possible, in particular, through the analysis of mice deficient in SC or cohesin proteins has significantly enriched our understanding of how meiotic chromosome architecture is determined. Cohesins and the SC proteins act together in generating the characteristic axis-loop structure of meiotic chromosomes, their pairing into bivalents, their ability to recombine, and to be properly segregated. This minireview attempts to summarize the current knowledge with a focus on higher eukaryotic systems and to ask questions that ought to be addressed in the future.
Journal of Biological Chemistry | 2004
Allen Chiu; Ekaterina Revenkova; Rolf Jessberger
The eukaryotic SMC1/SMC3 heterodimer is essential for sister chromatid cohesion and acts in DNA repair and recombination. Dimerization depends on the central hinge domain present in all SMC proteins, which is flanked at each side by extended coiled-coil regions that terminate in specific globular domains. Here we report on DNA interactions of the eukaryotic, heterodimeric SMC1/SMC3 hinge regions, using the two known isoforms, SMC1α/SMC3 and the meiotic SMC1β/SMC3. Both dimers bind DNA with a preference for double-stranded DNA and DNA rich in potential secondary structures. Both dimers form large protein-DNA networks and promote reannealing of complementary DNA strands. DNA binding but not dimerization depends on approximately 20 amino acids of transitional sequence into the coiled-coil region. Replacement of three highly conserved glycine residues, thought to be required for dimerization, in one of the two hinge domains still allows formation of a stable dimer, but if two hinge domains are mutated dimerization fails. Single-mutant dimers bind DNA, but hinge monomers do not. Together, we show that eukaryotic hinge dimerization does not require conserved glycines in both hinge domains, that only the transition into the coiled-coil region rather than the entire coiled-coil region is necessary for DNA binding, and that dimerization is required but not sufficient for DNA binding of the eukaryotic hinge heterodimer.