Ekaterina Subbotina
Roy J. and Lucille A. Carver College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ekaterina Subbotina.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Ekaterina Subbotina; Ana Sierra; Zhiyong Zhu; Zhan Gao; Siva Rama Krishna Koganti; Santiago Reyes; Elizabeth Stepniak; Susan A. Walsh; Michael R. Acevedo; Denice M. Hodgson-Zingman; Leonid V. Zingman
Significance Skeletal muscle is increasingly recognized as a secretory organ. Revealing the identity and function of myokines can improve our understanding of skeletal muscle function under sedentary or exercise conditions, as well as its coordination with other organs, tissues, and overall body metabolism. This study identifies musclin as an exercise-responsive myokine critical for skeletal muscle adaptation to physical activity. We develop a musclin-encoding gene (Ostn) knockout mouse, which allows us to determine a previously unrecognized physiologic function of musclin in regulation of skeletal muscle mitochondrial biogenesis and physical endurance. The demonstrated molecular mechanism for musclin-dependent skeletal muscle adaptation to exercise also transforms the perspective on natriuretic peptide signaling, particularly as it relates to physical activity and exercise-induced remodeling in different tissues. Exercise remains the most effective way to promote physical and metabolic wellbeing, but molecular mechanisms underlying exercise tolerance and its plasticity are only partially understood. In this study we identify musclin—a peptide with high homology to natriuretic peptides (NP)—as an exercise-responsive myokine that acts to enhance exercise capacity in mice. We use human primary myoblast culture and in vivo murine models to establish that the activity-related production of musclin is driven by Ca2+-dependent activation of Akt1 and the release of musclin-encoding gene (Ostn) transcription from forkhead box O1 transcription factor inhibition. Disruption of Ostn and elimination of musclin secretion in mice results in reduced exercise tolerance that can be rescued by treatment with recombinant musclin. Reduced exercise capacity in mice with disrupted musclin signaling is associated with a trend toward lower levels of plasma atrial NP (ANP) and significantly smaller levels of cyclic guanosine monophosphate (cGMP) and peroxisome proliferator-activated receptor gamma coactivator 1-α in skeletal muscles after exposure to exercise. Furthermore, in agreement with the established musclin ability to interact with NP clearance receptors, but not with NP guanyl cyclase-coupled signaling receptors, we demonstrate that musclin enhances cGMP production in cultured myoblasts only when applied together with ANP. Elimination of the activity-related musclin-dependent boost of ANP/cGMP signaling results in significantly lower maximum aerobic capacity, mitochondrial protein content, respiratory complex protein expression, and succinate dehydrogenase activity in skeletal muscles. Together, these data indicate that musclin enhances physical endurance by promoting mitochondrial biogenesis.
Biochemical and Biophysical Research Communications | 2011
Zhiyong Zhu; Colin M.L. Burnett; Gennadiy Maksymov; Elizabeth Stepniak; Ana Sierra; Ekaterina Subbotina; Mark E. Anderson; William A. Coetzee; Denice M. Hodgson-Zingman; Leonid V. Zingman
The cardiovascular system operates under demands ranging from conditions of rest to extreme stress. One mechanism of cardiac stress tolerance is action potential duration shortening driven by ATP-sensitive potassium (K(ATP)) channels. K(ATP) channel expression has a significant physiologic impact on action potential duration shortening and myocardial energy consumption in response to physiologic heart rate acceleration. However, the effect of reduced channel expression on action potential duration shortening in response to severe metabolic stress is yet to be established. Here, transgenic mice with myocardium-specific expression of a dominant negative K(ATP) channel subunit were compared with littermate controls. Evaluation of K(ATP) channel whole cell current and channel number/patch was assessed by patch clamp in isolated ventricular cardiomyocytes. Monophasic action potentials were monitored in retrogradely perfused, isolated hearts during the transition to hypoxic perfusate. An 80-85% reduction in cardiac K(ATP) channel current density results in a similar magnitude, but significantly slower rate, of shortening of the ventricular action potential duration in response to severe hypoxia, despite no significant difference in coronary flow. Therefore, the number of functional cardiac sarcolemmal K(ATP) channels is a critical determinant of the rate of adaptation of myocardial membrane excitability, with implications for optimization of cardiac energy consumption and consequent cardioprotection under conditions of severe metabolic stress.
Journal of Biological Chemistry | 2013
Ana Sierra; Zhiyong Zhu; Nicolas Sapay; Vikas Sharotri; Crystal F. Kline; Elizabeth D. Luczak; Ekaterina Subbotina; Asipu Sivaprasadarao; Peter M. Snyder; Peter J. Mohler; Mark E. Anderson; Michel Vivaudou; Leonid V. Zingman; Denice M. Hodgson-Zingman
Background: Surface expression of cardiac ATP-sensitive potassium (KATP) channels impacts cellular energy homeostasis. Results: Activation of calcium/calmodulin-dependent protein kinase II (CaMKII) results in KATP channel internalization, requiring specific motifs on the Kir6.2 channel subunit. Conclusion: CaMKII phosphorylation of Kir6.2 promotes endocytosis of cardiac KATP channels. Significance: This mechanism reveals new targets to improve cardiac energy efficiency and stress resistance. Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance.
The Journal of General Physiology | 2014
Zhiyong Zhu; Ana Sierra; Colin M.L. Burnett; Biyi Chen; Ekaterina Subbotina; Siva Rama Krishna Koganti; Zhan Gao; Yuejin Wu; Mark E. Anderson; Long-Sheng Song; David J. Goldhamer; William A. Coetzee; Denice M. Hodgson-Zingman; Leonid V. Zingman
ATP-sensitive potassium (KATP) channels have the unique ability to adjust membrane excitability and functions in accordance with the metabolic status of the cell. Skeletal muscles are primary sites of activity-related energy consumption and have KATP channels expressed in very high density. Previously, we demonstrated that transgenic mice with skeletal muscle–specific disruption of KATP channel function consume more energy than wild-type littermates. However, how KATP channel activation modulates skeletal muscle resting and action potentials under physiological conditions, particularly low-intensity workloads, and how this can be translated to muscle energy expenditure are yet to be determined. Here, we developed a technique that allows evaluation of skeletal muscle excitability in situ, with minimal disruption of the physiological environment. Isometric twitching of the tibialis anterior muscle at 1 Hz was used as a model of low-intensity physical activity in mice with normal and genetically disrupted KATP channel function. This workload was sufficient to induce KATP channel opening, resulting in membrane hyperpolarization as well as reduction in action potential overshoot and duration. Loss of KATP channel function resulted in increased calcium release and aggravated activity-induced heat production. Thus, this study identifies low-intensity workload as a trigger for opening skeletal muscle KATP channels and establishes that this coupling is important for regulation of myocyte function and thermogenesis. These mechanisms may provide a foundation for novel strategies to combat metabolic derangements when energy conservation or dissipation is required.
Clinical Pharmacology & Therapeutics | 2016
Ekaterina Subbotina; Srk Koganti; Denice M. Hodgson-Zingman; Leonid V. Zingman
The development of genetic and molecular biology tools permitting the connection of specific genes to their functions has accelerated our understanding of molecular pathways underlying health and disease. The resulting gains in knowledge have propelled gene targeting to the forefront of promising therapeutic strategies. Here we discuss the uniquely powerful and adaptable approach of morpholino-driven modification of normal and mutant gene expression as a pathway to health.
Molecular Therapy | 2015
Siva Rama Krishna Koganti; Zhiyong Zhu; Ekaterina Subbotina; Zhan Gao; Ana Sierra; Manuel Proenza; Liping Yang; Alexey E. Alekseev; Denice M. Hodgson-Zingman; Leonid V. Zingman
Despite the medical, social, and economic impact of obesity, only a few therapeutic options, focused largely on reducing caloric intake, are currently available and these have limited success rates. A major impediment is that any challenge by caloric restriction is counterbalanced by activation of systems that conserve energy to prevent body weight loss. Therefore, targeting energy-conserving mechanisms to promote energy expenditure is an attractive strategy for obesity treatment. Here, in order to suppress muscle energy efficiency, we target sarcolemmal ATP-sensitive potassium (KATP) channels which have previously been shown to be important in maintaining muscle energy economy. Specifically, we employ intramuscular injections of cell-penetrating vivo-morpholinos to prevent translation of the channel pore-forming subunit. This intervention results in significant reduction of KATP channel expression and function in treated areas, without affecting the channel expression in nontargeted tissues. Furthermore, suppression of KATP channel function in a group of hind limb muscles causes a substantial increase in activity-related energy consumption, with little effect on exercise tolerance. These findings establish a proof-of-principle that selective skeletal muscle targeting of sarcolemmal KATP channel function is possible and that this intervention can alter overall bodily energetics without a disabling impact on muscle mechanical function.
PLOS ONE | 2016
Zhan Gao; Ana Sierra; Zhiyong Zhu; Siva Rama Krishna Koganti; Ekaterina Subbotina; Ankit Maheshwari; Mark E. Anderson; Leonid V. Zingman; Denice M. Hodgson-Zingman
The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP) channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD) in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB) model of heart failure is coupled with a 35–40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of CaMKII-dependent downregulation of KATP channel expression as a mechanism for vulnerability to injury in failing hearts points to strategies targeting this interaction for potential preventives or treatments.
Biochemical and Biophysical Research Communications | 2016
Ana Sierra; Ekaterina Subbotina; Zhiyong Zhu; Zhan Gao; Siva Rama Krishna Koganti; William A. Coetzee; David J. Goldhamer; Denice M. Hodgson-Zingman; Leonid V. Zingman
Forensic Science International | 2018
Ekaterina Subbotina; Nori Williams; Barbara A. Sampson; Yingying Tang; William A. Coetzee
The FASEB Journal | 2016
Ekaterina Subbotina; Ana Sierra; Zhiyong Zhu; Zhan Gao; Sivaramakrishna Koganti; Elizabeth Stepniak; Denice M. Hodgson-Zingman; Leonid V. Zingman