Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elad Chomsky is active.

Publication


Featured researches published by Elad Chomsky.


Nature | 2013

Derivation of novel human ground state naive pluripotent stem cells

Ohad Gafni; Leehee Weinberger; Abed AlFatah Mansour; Yair S. Manor; Elad Chomsky; Dalit Ben-Yosef; Yael Kalma; Sergey Viukov; Itay Maza; Asaf Zviran; Yoach Rais; Zohar Shipony; Zohar Mukamel; Vladislav Krupalnik; Mirie Zerbib; Shay Geula; Inbal Caspi; Dan Schneir; Tamar Shwartz; Shlomit Gilad; Daniela Amann-Zalcenstein; Sima Benjamin; Ido Amit; Amos Tanay; Rada Massarwa; Noa Novershtern; Jacob Hanna

Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.


Nature | 2013

Deterministic direct reprogramming of somatic cells to pluripotency

Yoach Rais; Asaf Zviran; Shay Geula; Ohad Gafni; Elad Chomsky; Sergey Viukov; Abed AlFatah Mansour; Inbal Caspi; Vladislav Krupalnik; Mirie Zerbib; Itay Maza; Nofar Mor; Dror Baran; Leehee Weinberger; Diego Jaitin; David Lara-Astiaso; Ronnie Blecher-Gonen; Zohar Shipony; Zohar Mukamel; Tzachi Hagai; Shlomit Gilad; Daniela Amann-Zalcenstein; Amos Tanay; Ido Amit; Noa Novershtern; Jacob Hanna

Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.


Science | 2015

m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation

Shay Geula; Sharon Moshitch-Moshkovitz; Dan Dominissini; Abed AlFatah Mansour; Nitzan Kol; Mali Salmon-Divon; Vera Hershkovitz; Eyal Peer; Nofar Mor; Yair S. Manor; Moshe Shay Ben-Haim; Eran Eyal; Sharon Yunger; Yishay Pinto; Diego Jaitin; Sergey Viukov; Yoach Rais; Vladislav Krupalnik; Elad Chomsky; Mirie Zerbib; Itay Maza; Yoav Rechavi; Rada Massarwa; Suhair Hanna; Ido Amit; Erez Y. Levanon; Ninette Amariglio; Noam Stern-Ginossar; Noa Novershtern; Gideon Rechavi

mRNA modification regulates pluripotency When stem cells progress from an embryonic pluripotent state toward a particular lineage, molecular switches dismantle the transcription factor network that keeps the cell pluripotent. Geula et al. now show that N6-methyladenosine (m6A), a messenger RNA (mRNA) modification present on transcripts of pluripotency factors, drives this transition. Methylation destabilized mRNA transcripts and limited their translation efficiency, which promoted the timely decay of naïve pluripotency. This m6A methylation was also critical for mammalian development. Science, this issue p. 1002 A messenger RNA epigenetic modification regulates stem cell progression from the pluripotent to the differentiated state. Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N6-methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout preimplantation epiblasts and naïve embryonic stem cells are depleted for m6A in mRNAs, yet are viable. However, they fail to adequately terminate their naïve state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner.


Nature | 2014

Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells

Zohar Shipony; Zohar Mukamel; Netta Mendelson Cohen; Gilad Landan; Elad Chomsky; Shlomit Reich Zeliger; Yael Fried; Elena Ainbinder; Nir Friedman; Amos Tanay

Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency.


bioRxiv | 2017

High-Resolution Dissection of Conducive Reprogramming Trajectory to Ground State Pluripotency

Asaf Zviran; Nofar Mor; Yoach Rais; Hila Gingold; Shani Peles; Elad Chomsky; Sergey Viukov; Jason D. Buenrostro; Leehee Weinberger; Yair S. Manor; Vladislav Krupalnik; Mirie Zerbib; Hadas Hezroni; Diego Jaitin; David Larastiaso; Shlomit Gilad; Sima Benjamin; Awni Mousa; Muneef Ayyash; Daoud Sheban; Jonathan Bayerl; Alejandro Aguilera Castrejon; Rada Massarwa; Itay Maza; Suhair Hanna; Ido Amit; Yonatan Stelzer; Igor Ulitsky; William J. Greenleaf; Yitzhak Pilpel

The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) with four transcription factors Oct4, Sox2, Klf4 and cMyc (abbreviated as OSKM)1 has provoked interest to define the molecular characteristics of this process2-7. Despite important progress, the dynamics of epigenetic reprogramming at high resolution in correctly reprogrammed iPSCs and throughout the entire process remain largely undefined. This gap in understanding results from the inefficiency of conventional reprogramming methods coupled with the difficulty of prospectively isolating the rare cells that eventually correctly reprogram into iPSCs. Here we characterize cell fate conversion from fibroblast to iPSC using a highly efficient deterministic murine reprogramming system engineered through optimized inhibition of Gatad2a-Mbd3/NuRD repressive sub-complex. This comprehensive characterization provides single-day resolution of dynamic changes in levels of gene expression, chromatin modifications, TF binding, DNA accessibility and DNA methylation. The integrative analysis identified two transcriptional modules that dominate successful reprogramming. One consists of genes whose transcription is regulated by on/off epigenetic switching of modifications in their promoters (abbreviated as ESPGs), and the second consists of genes with promoters in a constitutively active chromatin state, but a dynamic expression pattern (abbreviated as CAPGs). ESPGs are mainly regulated by OSK, rather than Myc, and are enriched for cell fate determinants and pluripotency factors. CAPGs are predominantly regulated by Myc, and are enriched for cell biosynthetic regulatory functions. We used the ESPG module to study the identity and temporal occurrence of activating and repressing epigenetic switching during reprogramming. Removal of repressive chromatin modifications precedes chromatin opening and binding of RNA polymerase II at enhancers and promoters, and the opposite dynamics occur during repression of enhancers and promoters. Genome wide DNA methylation analysis demonstrated that de novo DNA methylation is not required for highly efficient conducive iPSC reprogramming, and identified a group of super-enhancers targeted by OSK, whose early demethylation marks commitment to a successful reprogramming trajectory also in inefficient conventional reprogramming systems. CAPGs are distinctively regulated by multiple synergystic ways: 1) Myc activity, delivered either endogenously or exogenously, dominates CAPG expression changes and is indispensable for induction of pluripotency in somatic cells; 2) A change in tRNA codon usage which is specific to CAPGs, but not ESPGs, and favors their translation. In summary, our unbiased high-resolution mapping of epigenetic changes on somatic cells that are committed to undergo successful reprogramming reveals interleaved epigenetic and biosynthetic reconfigurations that rapidly commission and propel conducive reprogramming toward naïve pluripotency.


Nature | 2015

Corrigendum: Derivation of novel human ground state naive pluripotent stem cells

Ohad Gafni; Leehee Weinberger; Abed AlFatah Mansour; Yair S. Manor; Elad Chomsky; Dalit Ben-Yosef; Yael Kalma; Sergey Viukov; Itay Maza; Asaf Zviran; Yoach Rais; Zohar Shipony; Zohar Mukamel; Vladislav Krupalnik; Mirie Zerbib; Shay Geula; Inbal Caspi; Dan Schneir; Tamar Shwartz; Shlomit Gilad; Daniela Amann-Zalcenstein; Sima Benjamin; Ido Amit; Amos Tanay; Rada Massarwa; Noa Novershtern; Jacob Hanna

This corrects the article DOI: 10.1038/nature12745


bioRxiv | 2018

MetaCell: analysis of single cell RNA-seq data using k-NN graph partitions

Yael Baran; Arnau Sebé-Pedrós; Yaniv Lubling; Amir Giladi; Elad Chomsky; Zohar Meir; Michael Hoichman; Aviezer Lifshitz; Amos Tanay

Single cell RNA-seq (scRNA-seq) has become the method of choice for analyzing mRNA distributions in heterogeneous cell populations. scRNA-seq only partially samples the cells in a tissue and the RNA in each cell, resulting in sparse data that challenge analysis. We develop a methodology that addresses scRNA-seq’s sparsity through partitioning the data into metacells: disjoint, homogenous and highly compact groups of cells, each exhibiting only sampling variance. Metacells constitute local building blocks for clustering and quantitative analysis of gene expression, while not enforcing any global structure on the data, thereby maintaining statistical control and minimizing biases. We illustrate the MetaCell framework by re-analyzing cell type and transcriptional gradients in peripheral blood and whole organism scRNA-seq maps. Our algorithms are implemented in the new MetaCell R/C++ software package.


Nature Ecology and Evolution | 2018

Early metazoan cell type diversity and the evolution of multicellular gene regulation

Arnau Sebé-Pedrós; Elad Chomsky; Kevin Pang; David Lara-Astiaso; Federico Gaiti; Zohar Mukamel; Ido Amit; Andreas Hejnol; Bernard M. Degnan; Amos Tanay

A hallmark of metazoan evolution is the emergence of genomic mechanisms that implement cell-type-specific functions. However, the evolution of metazoan cell types and their underlying gene regulatory programmes remains largely uncharacterized. Here, we use whole-organism single-cell RNA sequencing to map cell-type-specific transcription in Porifera (sponges), Ctenophora (comb jellies) and Placozoa species. We describe the repertoires of cell types in these non-bilaterian animals, uncovering diverse instances of previously unknown molecular signatures, such as multiple types of peptidergic cells in Placozoa. Analysis of the regulatory programmes of these cell types reveals variable levels of complexity. In placozoans and poriferans, sequence motifs in the promoters are predictive of cell-type-specific programmes. By contrast, the generation of a higher diversity of cell types in ctenophores is associated with lower specificity of promoter sequences and the existence of distal regulatory elements. Our findings demonstrate that metazoan cell types can be defined by networks of transcription factors and proximal promoters, and indicate that further genome regulatory complexity may be required for more diverse cell type repertoires.Analysis of cell-type-specific transcription in non-bilaterian animals provides insight into the evolution of the gene regulatory networks that underlie metazoan cell types.


bioRxiv | 2017

Cnidarian cell type diversity revealed by whole-organism single-cell RNA-seq analysis

Arnau Sebé-Pedrós; Elad Chomsky; Baptiste Saudemont; Marie-Pierre Mailhé; Flora Pleisser; Justine Renno; Yann Loe-Mie; Aviezer Lifshitz; Zohar Mukamel; Sandrine Schmutz; Sophie Nouvault; François Spitz; Amos Tanay; Heather Marlow

A hallmark of animal evolution is the emergence and diversification of cell type-specific transcriptional states. But systematic and unbiased characterization of differentiated gene regulatory programs was so far limited to specific tissues in a few model species. Here, we perform whole-organism single cell transcriptomics to map cell types in the cnidarian Nematostella vectensis, a non-bilaterian animal that display complex tissue-level bodyplan organization. We uncover high diversity of transcriptional states in Nematostella, demonstrating cell type-specific expression for 35% of the genes and 51% of the transcription factors (TFs) detected. We identify eight broad cell clusters corresponding to cell classes such as neurons, muscles, cnidocytes, or digestive cells. These clusters comprise multiple cell modules expressing diverse and specific markers, uncovering in particular a rich repertoire of cells associated with neuronal markers. TF expression and sequence analysis defines the combinatorial code that underlies this cell-specific expression. It also reveals the existence of a complex regulatory lexicon of TF binding motifs encoded at both enhancer and promoters of Nematostella tissue-specific genes. Whole organism single cell RNA-seq is thereby established as a tool for comprehensive study of genome regulation and cell type evolution.


Nature Biotechnology | 2015

Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors

Itay Maza; Inbal Caspi; Asaf Zviran; Elad Chomsky; Yoach Rais; Sergey Viukov; Shay Geula; Jason D. Buenrostro; Leehee Weinberger; Vladislav Krupalnik; Suhair Hanna; Mirie Zerbib; James R. Dutton; William J. Greenleaf; Rada Massarwa; Noa Novershtern; Jacob Hanna

Collaboration


Dive into the Elad Chomsky's collaboration.

Top Co-Authors

Avatar

Mirie Zerbib

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sergey Viukov

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Vladislav Krupalnik

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Yoach Rais

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Amos Tanay

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Asaf Zviran

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Itay Maza

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Noa Novershtern

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Rada Massarwa

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Shay Geula

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge