Mirie Zerbib
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mirie Zerbib.
Nature | 2013
Ohad Gafni; Leehee Weinberger; Abed AlFatah Mansour; Yair S. Manor; Elad Chomsky; Dalit Ben-Yosef; Yael Kalma; Sergey Viukov; Itay Maza; Asaf Zviran; Yoach Rais; Zohar Shipony; Zohar Mukamel; Vladislav Krupalnik; Mirie Zerbib; Shay Geula; Inbal Caspi; Dan Schneir; Tamar Shwartz; Shlomit Gilad; Daniela Amann-Zalcenstein; Sima Benjamin; Ido Amit; Amos Tanay; Rada Massarwa; Noa Novershtern; Jacob Hanna
Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.
Nature | 2013
Yoach Rais; Asaf Zviran; Shay Geula; Ohad Gafni; Elad Chomsky; Sergey Viukov; Abed AlFatah Mansour; Inbal Caspi; Vladislav Krupalnik; Mirie Zerbib; Itay Maza; Nofar Mor; Dror Baran; Leehee Weinberger; Diego Jaitin; David Lara-Astiaso; Ronnie Blecher-Gonen; Zohar Shipony; Zohar Mukamel; Tzachi Hagai; Shlomit Gilad; Daniela Amann-Zalcenstein; Amos Tanay; Ido Amit; Noa Novershtern; Jacob Hanna
Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.
Science | 2015
Shay Geula; Sharon Moshitch-Moshkovitz; Dan Dominissini; Abed AlFatah Mansour; Nitzan Kol; Mali Salmon-Divon; Vera Hershkovitz; Eyal Peer; Nofar Mor; Yair S. Manor; Moshe Shay Ben-Haim; Eran Eyal; Sharon Yunger; Yishay Pinto; Diego Jaitin; Sergey Viukov; Yoach Rais; Vladislav Krupalnik; Elad Chomsky; Mirie Zerbib; Itay Maza; Yoav Rechavi; Rada Massarwa; Suhair Hanna; Ido Amit; Erez Y. Levanon; Ninette Amariglio; Noam Stern-Ginossar; Noa Novershtern; Gideon Rechavi
mRNA modification regulates pluripotency When stem cells progress from an embryonic pluripotent state toward a particular lineage, molecular switches dismantle the transcription factor network that keeps the cell pluripotent. Geula et al. now show that N6-methyladenosine (m6A), a messenger RNA (mRNA) modification present on transcripts of pluripotency factors, drives this transition. Methylation destabilized mRNA transcripts and limited their translation efficiency, which promoted the timely decay of naïve pluripotency. This m6A methylation was also critical for mammalian development. Science, this issue p. 1002 A messenger RNA epigenetic modification regulates stem cell progression from the pluripotent to the differentiated state. Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N6-methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout preimplantation epiblasts and naïve embryonic stem cells are depleted for m6A in mRNAs, yet are viable. However, they fail to adequately terminate their naïve state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner.
Nature | 2012
Abed AlFatah Mansour; Ohad Gafni; Leehee Weinberger; Asaf Zviran; Muneef Ayyash; Yoach Rais; Vladislav Krupalnik; Mirie Zerbib; Daniela Amann-Zalcenstein; Itay Maza; Shay Geula; Sergey Viukov; Liad Holtzman; Ariel Pribluda; Eli Canaani; Shirley Horn-Saban; Ido Amit; Noa Novershtern; Jacob Hanna
Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by ectopic expression of different transcription factors, classically Oct4 (also known as Pou5f1), Sox2, Klf4 and Myc (abbreviated as OSKM). This process is accompanied by genome-wide epigenetic changes, but how these chromatin modifications are biochemically determined requires further investigation. Here we show in mice and humans that the histone H3 methylated Lys 27 (H3K27) demethylase Utx (also known as Kdm6a) regulates the efficient induction, rather than maintenance, of pluripotency. Murine embryonic stem cells lacking Utx can execute lineage commitment and contribute to adult chimaeric animals; however, somatic cells lacking Utx fail to robustly reprogram back to the ground state of pluripotency. Utx directly partners with OSK reprogramming factors and uses its histone demethylase catalytic activity to facilitate iPSC formation. Genomic analysis indicates that Utx depletion results in aberrant dynamics of H3K27me3 repressive chromatin demethylation in somatic cells undergoing reprogramming. The latter directly hampers the derepression of potent pluripotency promoting gene modules (including Sall1, Sall4 and Utf1), which can cooperatively substitute for exogenous OSK supplementation in iPSC formation. Remarkably, Utx safeguards the timely execution of H3K27me3 demethylation observed in embryonic day 10.5–11 primordial germ cells (PGCs), and Utx-deficient PGCs show cell-autonomous aberrant epigenetic reprogramming dynamics during their embryonic maturation in vivo. Subsequently, this disrupts PGC development by embryonic day 12.5, and leads to diminished germline transmission in mouse chimaeras generated from Utx-knockout pluripotent cells. Thus, we identify Utx as a novel mediator with distinct functions during the re-establishment of pluripotency and germ cell development. Furthermore, our findings highlight the principle that molecular regulators mediating loss of repressive chromatin during in vivo germ cell reprogramming can be co-opted during in vitro reprogramming towards ground state pluripotency.
bioRxiv | 2017
Asaf Zviran; Nofar Mor; Yoach Rais; Hila Gingold; Shani Peles; Elad Chomsky; Sergey Viukov; Jason D. Buenrostro; Leehee Weinberger; Yair S. Manor; Vladislav Krupalnik; Mirie Zerbib; Hadas Hezroni; Diego Jaitin; David Larastiaso; Shlomit Gilad; Sima Benjamin; Awni Mousa; Muneef Ayyash; Daoud Sheban; Jonathan Bayerl; Alejandro Aguilera Castrejon; Rada Massarwa; Itay Maza; Suhair Hanna; Ido Amit; Yonatan Stelzer; Igor Ulitsky; William J. Greenleaf; Yitzhak Pilpel
The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) with four transcription factors Oct4, Sox2, Klf4 and cMyc (abbreviated as OSKM)1 has provoked interest to define the molecular characteristics of this process2-7. Despite important progress, the dynamics of epigenetic reprogramming at high resolution in correctly reprogrammed iPSCs and throughout the entire process remain largely undefined. This gap in understanding results from the inefficiency of conventional reprogramming methods coupled with the difficulty of prospectively isolating the rare cells that eventually correctly reprogram into iPSCs. Here we characterize cell fate conversion from fibroblast to iPSC using a highly efficient deterministic murine reprogramming system engineered through optimized inhibition of Gatad2a-Mbd3/NuRD repressive sub-complex. This comprehensive characterization provides single-day resolution of dynamic changes in levels of gene expression, chromatin modifications, TF binding, DNA accessibility and DNA methylation. The integrative analysis identified two transcriptional modules that dominate successful reprogramming. One consists of genes whose transcription is regulated by on/off epigenetic switching of modifications in their promoters (abbreviated as ESPGs), and the second consists of genes with promoters in a constitutively active chromatin state, but a dynamic expression pattern (abbreviated as CAPGs). ESPGs are mainly regulated by OSK, rather than Myc, and are enriched for cell fate determinants and pluripotency factors. CAPGs are predominantly regulated by Myc, and are enriched for cell biosynthetic regulatory functions. We used the ESPG module to study the identity and temporal occurrence of activating and repressing epigenetic switching during reprogramming. Removal of repressive chromatin modifications precedes chromatin opening and binding of RNA polymerase II at enhancers and promoters, and the opposite dynamics occur during repression of enhancers and promoters. Genome wide DNA methylation analysis demonstrated that de novo DNA methylation is not required for highly efficient conducive iPSC reprogramming, and identified a group of super-enhancers targeted by OSK, whose early demethylation marks commitment to a successful reprogramming trajectory also in inefficient conventional reprogramming systems. CAPGs are distinctively regulated by multiple synergystic ways: 1) Myc activity, delivered either endogenously or exogenously, dominates CAPG expression changes and is indispensable for induction of pluripotency in somatic cells; 2) A change in tRNA codon usage which is specific to CAPGs, but not ESPGs, and favors their translation. In summary, our unbiased high-resolution mapping of epigenetic changes on somatic cells that are committed to undergo successful reprogramming reveals interleaved epigenetic and biosynthetic reconfigurations that rapidly commission and propel conducive reprogramming toward naïve pluripotency.
Nature | 2015
Ohad Gafni; Leehee Weinberger; Abed AlFatah Mansour; Yair S. Manor; Elad Chomsky; Dalit Ben-Yosef; Yael Kalma; Sergey Viukov; Itay Maza; Asaf Zviran; Yoach Rais; Zohar Shipony; Zohar Mukamel; Vladislav Krupalnik; Mirie Zerbib; Shay Geula; Inbal Caspi; Dan Schneir; Tamar Shwartz; Shlomit Gilad; Daniela Amann-Zalcenstein; Sima Benjamin; Ido Amit; Amos Tanay; Rada Massarwa; Noa Novershtern; Jacob Hanna
This corrects the article DOI: 10.1038/nature12745
bioRxiv | 2014
Itay Maza; Inbal Casoi; Sergey Viukov; Yoach Rais; Asaf Zviran; Shay Geula; Vladislav Krupalnik; Mirie Zerbib; Rada Massarwa; Noa Novershtern; Jacob Hanna
Recent reports have proposed a new paradigm for obtaining mature somatic cell types from fibroblasts without going through a pluripotent state, by briefly expressing canonical iPSC reprogramming factors Oct4, Sox2, Klf4, c-Myc (abbreviated as OSKM) in cells expanded in lineage differentiation promoting conditions. Here we apply genetic lineage tracing for endogenous Nanog locus and X chromosome reactivation during OSKM induced trans-differentiation, as these molecular events mark final stages for acquisition of induced pluripotency. Remarkably, the majority of reprogrammed cardiomyocytes or neural stem cells derived from mouse fibroblasts via OSKM mediated trans-differentiation (∼>90%), are attained after transient acquisition of pluripotency, and followed by rapid differentiation. Our findings underscore a molecular and functional coupling between inducing pluripotency and obtaining “trans-differentiated” somatic cells via OSKM induction, and have implications on defining molecular trajectories assumed during different cell reprogramming methods.
Nature Biotechnology | 2015
Itay Maza; Inbal Caspi; Asaf Zviran; Elad Chomsky; Yoach Rais; Sergey Viukov; Shay Geula; Jason D. Buenrostro; Leehee Weinberger; Vladislav Krupalnik; Suhair Hanna; Mirie Zerbib; James R. Dutton; William J. Greenleaf; Rada Massarwa; Noa Novershtern; Jacob Hanna
Nature | 2015
Yoach Rais; Asaf Zviran; Shay Geula; Ohad Gafni; Elad Chomsky; Sergey Viukov; Abed AlFatah Mansour; Inbal Caspi; Vladislav Krupalnik; Mirie Zerbib; Itay Maza; Nofar Mor; Dror Baran; Leehee Weinberger; Diego Jaitin; David Lara-Astiaso; Ronnie Blecher-Gonen; Zohar Shipony; Zohar Mukamel; Tzachi Hagai; Shlomit Gilad; Daniela Amann-Zalcenstein; Amos Tanay; Ido Amit; Noa Novershtern; Jacob Hanna
bioRxiv | 2018
Nofar Mor; Yoach Rais; Shani Peles; Daoud Sheban; Alejandro Aguilera-Castrejon; Asaf Zviran; Dalia Elinger; Sergey Viukov; Shay Geula; Vladislav Krupalnik; Mirie Zerbib; Elad Chomsky; Lior Lasman; Tom Shani; Jonathan Bayerl; Ohad Gafni; Suhair Hanna; Jason D. Buenrostro; Tzachi Hagai; Hagit Masika; Yehudit Bergman; William J. Greenleaf; Miguel A. Esteban; Yishai Levin; Rada Massarwa; Yifat Merbl; Noa Novershtern; Jacob Hanna