Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elaine L. Bearer is active.

Publication


Featured researches published by Elaine L. Bearer.


Proceedings of the National Academy of Sciences of the United States of America | 2007

One at a time, live tracking of NGF axonal transport using quantum dots

Bianxiao Cui; Chengbiao Wu; Liang Chen; Alfredo Ramirez; Elaine L. Bearer; Wei-Ping Li; William C. Mobley; Steven Chu

Retrograde axonal transport of nerve growth factor (NGF) signals is critical for the survival, differentiation, and maintenance of peripheral sympathetic and sensory neurons and basal forebrain cholinergic neurons. However, the mechanisms by which the NGF signal is propagated from the axon terminal to the cell body are yet to be fully elucidated. To gain insight into the mechanisms, we used quantum dot-labeled NGF (QD-NGF) to track the movement of NGF in real time in compartmentalized culture of rat dorsal root ganglion (DRG) neurons. Our studies showed that active transport of NGF within the axons was characterized by rapid, unidirectional movements interrupted by frequent pauses. Almost all movements were retrograde, but short-distance anterograde movements were occasionally observed. Surprisingly, quantitative analysis at the single molecule level demonstrated that the majority of NGF-containing endosomes contained only a single NGF dimer. Electron microscopic analysis of axonal vesicles carrying QD-NGF confirmed this finding. The majority of QD-NGF was found to localize in vesicles 50–150 nm in diameter with a single lumen and no visible intralumenal membranous components. Our findings point to the possibility that a single NGF dimer is sufficient to sustain signaling during retrograde axonal transport to the cell body.


NeuroImage | 2007

Computer simulation of glioma growth and morphology.

Hermann B. Frieboes; John Lowengrub; Steven M. Wise; Xiaoming Zheng; Paul Macklin; Elaine L. Bearer; Vittorio Cristini

Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.


NeuroImage | 2006

Statistical diffusion tensor histology reveals regional dysmyelination effects in the shiverer mouse mutant

J. Michael Tyszka; Carol Readhead; Elaine L. Bearer; Robia G. Pautler; Russell E. Jacobs

Shiverer is an important model of central nervous system dysmyelination characterized by a deletion in the gene encoding myelin basic protein with relevance to human dysmyelinating and demyelinating diseases. Perfusion fixed brains from shiverer mutant (C3Fe.SWV Mbp(shi)/Mbp(shi)n = 6) and background control (C3HeB.FeJ, n = 6) mice were compared using contrast enhanced volumetric diffusion tensor magnetic resonance microscopy with a nominal isotropic spatial resolution of 80 mum. Images were accurately coregistered using non-linear warping allowing voxel-wise statistical parametric mapping of tensor invariant differences between control and shiverer groups. Highly significant differences in the tensor trace and both the axial and radial diffusivity were observed within the major white matter tracts and in the thalamus, midbrain, brainstem and cerebellar white matter, consistent with a high density of myelinated axons within these regions. The fractional anisotropy was found to be much less sensitive than the trace and eigenvalues to dysmyelination and associated microanatomic changes.


Stem Cells | 2007

Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation.

Jason M. Aliotta; Fermin M. Sanchez-Guijo; Gerri Dooner; Kevin W. Johnson; Mark S. Dooner; Kenneth Greer; Deborah Greer; Jeffrey Pimentel; Luiz M. Kolankiewicz; Napoleon Puente; Sam Faradyan; Paulette Ferland; Elaine L. Bearer; Michael Passero; Mehrdad Adedi; Gerald A. Colvin; Peter J. Quesenberry

Numerous animal studies have demonstrated that adult marrow‐derived cells can contribute to the cellular component of the lung. Lung injury is a major variable in this process; however, the mechanism remains unknown. We hypothesize that injured lung is capable of inducing epigenetic modifications of marrow cells, influencing them to assume phenotypic characteristics of lung cells. We report that under certain conditions, radiation‐injured lung induced expression of pulmonary epithelial cell‐specific genes and prosurfactant B protein in cocultured whole bone marrow cells separated by a cell‐impermeable membrane. Lung‐conditioned media had a similar effect on cocultured whole bone marrow cells and was found to contain pulmonary epithelial cell‐specific RNA‐filled microvesicles that entered whole bone marrow cells in culture. Also, whole bone marrow cells cocultured with lung had a greater propensity to produce type II pneumocytes after transplantation into irradiated mice. These findings demonstrate alterations of marrow cell phenotype by lung‐derived microvesicles and suggest a novel mechanism for marrow cell‐directed repair of injured tissue.


Journal of Alzheimer's Disease | 2016

Microbes and Alzheimer's Disease

Ruth F. Itzhaki; Richard Lathe; Brian J. Balin; Melvyn J. Ball; Elaine L. Bearer; Heiko Braak; María J. Bullido; Chris Carter; Mario Clerici; S. Louise Cosby; Kelly Del Tredici; Hugh J. Field; Tamas Fulop; Claudio Grassi; W. Sue T. Griffin; Jürgen Haas; Alan P. Hudson; Angela R. Kamer; Douglas B. Kell; Federico Licastro; Luc Letenneur; Hugo Lövheim; Roberta Mancuso; Judith Miklossy; Carola Otth; Anna Teresa Palamara; George Perry; Chris M. Preston; Etheresia Pretorius; Timo E. Strandberg

We are researchers and clinicians working on Alzheimer’s disease (AD) or related topics, and we write to express our concern that one particular aspect of the disease has been neglected, even thoug ...


Laryngoscope | 2001

Motility-related proteins as markers for head and neck squamous cell cancer

Manoj T. Abraham; M. Abraham Kuriakose; Peter G. Sacks; Herman Yee; Luis Chiriboga; Elaine L. Bearer; Mark D. DeLacure

Hypothesis Increased cell motility is a hallmark of cancer cells. Proteins involved in cell motility may be used as molecular markers to characterize the malignant potential of tumors.


Cancer Research | 2009

Multiparameter Computational Modeling of Tumor Invasion

Elaine L. Bearer; John Lowengrub; Hermann B. Frieboes; Yao Li Chuang; Fang Jin; Steven M. Wise; Mauro Ferrari; David B. Agus; Vittorio Cristini

Clinical outcome prognostication in oncology is a guiding principle in therapeutic choice. A wealth of qualitative empirical evidence links disease progression with tumor morphology, histopathology, invasion, and associated molecular phenomena. However, the quantitative contribution of each of the known parameters in this progression remains elusive. Mathematical modeling can provide the capability to quantify the connection between variables governing growth, prognosis, and treatment outcome. By quantifying the link between the tumor boundary morphology and the invasive phenotype, this work provides a quantitative tool for the study of tumor progression and diagnostic/prognostic applications. This establishes a framework for monitoring system perturbation towards development of therapeutic strategies and correlation to clinical outcome for prognosis.


Aging Cell | 2003

Fast anterograde transport of Herpes Simplex Virus: Role for the amyloid precursor protein of Alzheimer's disease

Prasanna Satpute-Krishnan; Joseph A. DeGiorgis; Elaine L. Bearer

Anterograde transport of herpes simplex virus (HSV) from its site of synthesis in the neuronal cell body out the neuronal process to the mucosal membrane is crucial for transmission of the virus from one person to another, yet the molecular mechanism is not known. By injecting GFP‐labeled HSV into the giant axon of the squid, we reconstitute fast anterograde transport of human HSV and use this as an assay to uncover the underlying molecular mechanism. HSV travels by fast axonal transport at velocities four‐fold faster (0.9 µm/sec average, 1.2 µm/sec maximal) than that of mitochondria moving in the same axon (0.2 µm/sec) and ten‐fold faster than negatively charged beads (0.08 µm/sec). Transport of HSV utilizes cellular transport mechanisms because it appears to be driven from inside cellular membranes as revealed by negative stain electron microscopy and by the association of TGN46, a component of the cellular secretory pathway, with GFP‐labeled viral particles. Finally, we show that amyloid precursor protein (APP), a putative receptor for the microtubule motor, kinesin, is a major component of viral particles, at least as abundant as any viral encoded protein, while another putative motor receptor, JIP 1/2, is not detected. Conventional kinesin is also associated with viral particles. This work links fast anterograde transport of the common pathogen, HSV, with the neurodegenerative Alzheimers disease. This novel connection should prompt new ideas for treatment and prevention strategies.


Biochimica et Biophysica Acta | 1982

Fusion of phospholipid vesicles arrested by quick-freezing. The question of lipidic particles as intermediates in membrane fusion

Elaine L. Bearer; Nejat Düzgüneş; Daniel S. Friend; Demetrios Papahadjopoulos

We have examined the early events in Ca2+-induced fusion of large (0.2 microns diameter) unilamellar cardiolipin/phosphatidylcholine and phosphatidylserine/phosphatidylethanolamine vesicles by quick-freezing freeze-fracture electron microscopy, eliminating the necessity of using glycerol as a cryoprotectant. Freeze-fracture replicas of vesicle suspensions frozen after 1-2 s of stimulation revealed that the majority of vesicles had already undergone membrane fusion, as evidenced by dumbbell-shaped structures and large vesicles. In the absence of glycerol, lipidic particles or the hexagonal HII phase, which have been proposed to be intermediate structures in membrane fusion, were not observed at the sites of fusion. Lipidic particles were evident in less than 5% of the cardiolipin/phosphatidylcholine vesicles after long-term incubation with Ca2+, and the addition of glycerol produced more vesicles displaying the particles. We have also shown that rapid fusion occurred within seconds of Ca2+ addition by the time-course of fluorescence emission produced by the intermixing of aqueous contents of two separate vesicle populations. These studies therefore have produced no evidence that lipidic particles are necessary intermediates for membrane fusion. On the contrary, they indicate that lipidic particles are structures obtained at equilibrium long after fusion has occurred and they become particularly prevalent in the presence of glycerol.


Histochemical Journal | 1981

β-Hydroxysterol distribution as determined by freeze-fracture cytochemistry

Daniel S. Friend; Elaine L. Bearer

SummaryFilipin a polyene antibiotic, fluoresces and forms 15–25 nm aggregates when combined with β-hydroxysterols, rendering sterols detectable by fluorescence microscopy and by electron microscopy of thin sections and freeze-fracture replicas. We applied filipin in a glutaraldehyde fixative to tissue-cultured cells ofDrosophila melanogaster larvae, in which sterol concentration can be regulated. Since the number of filipin-sterol aggregates observed in membranes was found to be preportional to the amount of sterol experimentally inserted, utilizing filipin is a valid method for quantifying, as well as for mapping, sterol distribution in biological membranes. Other antibiotics may be similarly used for localizing some species of negatively charged phospholipids.In addition to cytochemical identification of specific lipids, rapid freezing and deep etching of unfixed, non-cryoprotected cells may permit us to examine membrane lipids in different physical states liquid-crystalline and gel. Combining these several techniques has resulted in new data concerning the disposition of lipids during the intimate juxtaposition of membranes preceding fusion. For example, in guinea-pig sperm, foci of closely apposed membranes are bereft of β-hydroxysterols and intramembranous particles. Such regions of membrane sometimes exist in a crystalline state and may be rimmed by negatively charged phospholipids. As previously noted in other areas of cytochemistry, thein situ localization of specific substances provides information unobtainable by morphological or biochemical techniques alone.

Collaboration


Dive into the Elaine L. Bearer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell E. Jacobs

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaowei Zhang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hermann B. Frieboes

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Joseph A. DeGiorgis

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas S. Reese

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aaron Gonzales

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Lowengrub

University of California

View shared research outputs
Top Co-Authors

Avatar

Joseph J. Gallagher

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge