Elaine Patrick
University of East Anglia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elaine Patrick.
The Plant Cell | 2003
Shunyuan Xiao; Samantha Brown; Elaine Patrick; Charles A. Brearley; John Turner
The Arabidopsis disease resistance (R) genes RPW8.1 and RPW8.2 couple the recognition of powdery mildew pathogens of this plant with the subsequent induction of a localized necrosis, or hypersensitive response (HR). The HR restricts the spread of the infection and renders the plant resistant. One-third of Arabidopsis plants transformed with a genomic fragment containing RPW8.1 and RPW8.2 developed spontaneous HR-like lesions (SHL) in the absence of pathogens. We demonstrate that SHL occurs in transgenic lines that contain multiple copies of the transgene and express RPW8.1 and RPW8.2 at high levels. SHL is associated with salicylic acid (SA) accumulation, and at the site of the lesion, there is increased expression of RPW8.1, increased production of H2O2, and increased expression of pathogenesis-related genes. These lesions are physiologically similar to the pathogen-induced HR mediated by RPW8.1 and RPW8.2. Significantly, environmental conditions that suppress SHL suppress the transcription of RPW8.1 and RPW8.2 and also suppress resistance to powdery mildews, even in transgenic lines containing RPW8.1 and RPW8.2 that normally do not express SHL. Furthermore, treatment with SA increases the transcription of RPW8.1 and RPW8.2, induces SHL, and enhances resistance to powdery mildews. We conclude that HR requires the transcription of RPW8.1 and RPW8.2, which is regulated independently of the pathogen by SA-dependent feedback amplification.
The Plant Cell | 2010
Frances Robson; Haruko Okamoto; Elaine Patrick; Sue-Ré Harris; Claus Wasternack; Charles A. Brearley; John Turner
This work examines the interaction between jasmonate (JA) and light signaling. It finds that attenuation of shade responses by low red/far-red light requires the JA signal component COI1 and that some responses to JA are partly dependent on the light signal component phyA. The JA and phyA pathways are integrated through stability of the repressor protein JAZ1. Jasmonate (JA) activates plant defense, promotes pollen maturation, and suppresses plant growth. An emerging theme in JA biology is its involvement in light responses; here, we examine the interdependence of the JA- and light-signaling pathways in Arabidopsis thaliana. We demonstrate that mutants deficient in JA biosynthesis and signaling are deficient in a subset of high irradiance responses in far-red (FR) light. These mutants display exaggerated shade responses to low, but not high, R/FR ratio light, suggesting a role for JA in phytochrome A (phyA) signaling. Additionally, we demonstrate that the FR light–induced expression of transcription factor genes is dependent on CORONATINE INSENSITIVE1 (COI1), a central component of JA signaling, and is suppressed by JA. phyA mutants had reduced JA-regulated growth inhibition and VSP expression and increased content of cis-(+)-12-oxophytodienoic acid, an intermediate in JA biosynthesis. Significantly, COI1-mediated degradation of JASMONATE ZIM DOMAIN1-β-glucuronidase (JAZ1-GUS) in response to mechanical wounding and JA treatment required phyA, and ectopic expression of JAZ1-GUS resulted in exaggerated shade responses. Together, these results indicate that JA and phyA signaling are integrated through degradation of the JAZ1 protein, and both are required for plant responses to light and stress.
Biochemical Journal | 2012
Corinne Appia-Ayme; Andrea Hall; Elaine Patrick; Shiny Rajadurai; Thomas A. Clarke; Gary Rowley
The bacterial envelope is the interface with the surrounding environment and is consequently subjected to a barrage of noxious agents including a range of compounds with antimicrobial activity. The ESR (envelope stress response) pathways of enteric bacteria are critical for maintenance of the envelope against these antimicrobial agents. In the present study, we demonstrate that the periplasmic protein ZraP contributes to envelope homoeostasis and assign both chaperone and regulatory function to ZraP from Salmonella Typhimurium. The ZraP chaperone mechanism is catalytic and independent of ATP; the chaperone activity is dependent on the presence of zinc, which is shown to be responsible for the stabilization of an oligomeric ZraP complex. Furthermore, ZraP can act to repress the two-component regulatory system ZraSR, which itself is responsive to zinc concentrations. Through structural homology, ZraP is a member of the bacterial CpxP family of periplasmic proteins, which also consists of CpxP and Spy. We demonstrate environmental co-expression of the CpxP family and identify an important role for these proteins in Salmonellas defence against the cationic antimicrobial peptide polymyxin B.
PLOS ONE | 2011
Corinne Appia-Ayme; Elaine Patrick; Matthew J. Sullivan; Mark Alston; Sarah J. Field; Manal AbuOun; Muna F. Anjum; Gary Rowley
The RpoE and CpxR regulated envelope stress responses are extremely important for SalmonellaTyphimurium to cause infection in a range of hosts. Until now the role for BaeSR in both the Salmonella Typhimurium response to stress and its contribution to infection have not been fully elucidated. Here we demonstrate stationary phase growth, iron and sodium tungstate as novel inducers of the BaeRregulon, with BaeR critically required for Salmonella resistance to sodium tungstate. We show that functional overlap between the resistance nodulation-cell division (RND) multidrug transporters, MdtA, AcrD and AcrB exists for the waste disposal of tungstate from the cell. We also point to a role for enterobactinsiderophores in the protection of enteric organisms from tungstate, akin to the scenario in nitrogen fixing bacteria. Surprisingly, BaeR is the first envelope stress response pathway investigated in S. Typhimurium that is not required for murine typhoid in either ityS or ityR mouse backgrounds. BaeR is therefore either required for survival in larger mammals such as pigs or calves, an avian host such as chickens, or survival out with the host altogether where Salmonella and related enterics must survive in soil and water.
PeerJ | 2014
Ryan F. Seipke; Elaine Patrick; Matthew I. Hutchings
Antimycins are an extended family of depsipeptides that are made by filamentous actinomycete bacteria and were first isolated more than 60 years ago. Recently, antimycins have attracted renewed interest because of their activities against the anti-apoptotic machineries inside human cells which could make them promising anti-cancer compounds. The biosynthetic pathway for antimycins was recently characterised but very little is known about the organisation and regulation of the antimycin (ant) gene cluster. Here we report that the ant gene cluster in Streptomyces albus is organized into four transcriptional units; the antBA, antCDE, antGF and antHIJKLMNO operons. Unusually for secondary metabolite clusters, the antG and antH promoters are regulated by an extracytoplasmic function (ECF) RNA polymerase sigma factor named σAntA which represents a new sub-family of ECF σ factors that is only found in antimycin producing strains. We show that σAntA controls production of the unusual precursor 3-aminosalicylate which is absolutely required for the production of antimycins. σAntA is highly conserved in antimycin producing strains and the −10 and −35 elements at the σAntA regulated antG and antH promoters are also highly conserved suggesting a common mechanism of regulation. We also demonstrate that altering the C-terminal Ala-Ala residues found in all σAntA proteins to Asp-Asp increases expression of the antFG and antGHIJKLMNO operons and we speculate that this Ala-Ala motif may be a signal for the protease ClpXP.
Frontiers in Microbiology | 2016
Neil A. Holmes; Tabitha M. Innocent; Daniel Heine; Mahmoud Al Bassam; Sarah F. Worsley; Felix Trottmann; Elaine Patrick; Douglas W. Yu; J. C. Murrell; Morten Schiøtt; Barrie Wilkinson; Jacobus J. Boomsma; Matthew I. Hutchings
The attine ants of South and Central America are ancient farmers, having evolved a symbiosis with a fungal food crop >50 million years ago. The most evolutionarily derived attines are the Atta and Acromyrmex leafcutter ants, which harvest fresh leaves to feed their fungus. Acromyrmex and many other attines vertically transmit a mutualistic strain of Pseudonocardia and use antifungal compounds made by these bacteria to protect their fungal partner against co-evolved fungal pathogens of the genus Escovopsis. Pseudonocardia mutualists associated with the attines Apterostigma dentigerum and Trachymyrmex cornetzi make novel cyclic depsipeptide compounds called gerumycins, while a mutualist strain isolated from derived Acromyrmex octospinosus makes an unusual polyene antifungal called nystatin P1. The novelty of these antimicrobials suggests there is merit in exploring secondary metabolites of Pseudonocardia on a genome-wide scale. Here, we report a genomic analysis of the Pseudonocardia phylotypes Ps1 and Ps2 that are consistently associated with Acromyrmex ants collected in Gamboa, Panama. These were previously distinguished solely on the basis of 16S rRNA gene sequencing but genome sequencing of five Ps1 and five Ps2 strains revealed that the phylotypes are distinct species and each encodes between 11 and 15 secondary metabolite biosynthetic gene clusters (BGCs). There are signature BGCs for Ps1 and Ps2 strains and some that are conserved in both. Ps1 strains all contain BGCs encoding nystatin P1-like antifungals, while the Ps2 strains encode novel nystatin-like molecules. Strains show variations in the arrangement of these BGCs that resemble those seen in gerumycin gene clusters. Genome analyses and invasion assays support our hypothesis that vertically transmitted Ps1 and Ps2 strains have antibacterial activity that could help shape the cuticular microbiome. Thus, our work defines the Pseudonocardia species associated with Acromyrmex ants and supports the hypothesis that Pseudonocardia species could provide a valuable source of new antimicrobials.
Nature Communications | 2018
Daniel Heine; Neil A. Holmes; Sarah F. Worsley; Ana Carolina A. Santos; Tabitha M. Innocent; Kirstin Scherlach; Elaine Patrick; Douglas W. Yu; J. Colin Murrell; Paulo Cezar Vieria; Jacobus J. Boomsma; Christian Hertweck; Matthew I. Hutchings; Barrie Wilkinson
Acromyrmex leafcutter ants form a mutually beneficial symbiosis with the fungus Leucoagaricus gongylophorus and with Pseudonocardia bacteria. Both are vertically transmitted and actively maintained by the ants. The fungus garden is manured with freshly cut leaves and provides the sole food for the ant larvae, while Pseudonocardia cultures are reared on the ant-cuticle and make antifungal metabolites to help protect the cultivar against disease. If left unchecked, specialized parasitic Escovopsis fungi can overrun the fungus garden and lead to colony collapse. We report that Escovopsis upregulates the production of two specialized metabolites when it infects the cultivar. These compounds inhibit Pseudonocardia and one, shearinine D, also reduces worker behavioral defenses and is ultimately lethal when it accumulates in ant tissues. Our results are consistent with an active evolutionary arms race between Pseudonocardia and Escovopsis, which modifies both bacterial and behavioral defenses such that colony collapse is unavoidable once Escovopsis infections escalate.Acromyrmex ants cultivate fungus gardens that can be parasitized by Escovopsis sp., leading to colony collapse. Here, Heine et al. identify two secondary metabolites produced by Escovopsis that accumulate in Acromyrmex tissue, reduce behavioural defenses and suppress symbiotic Pseudonocardia bacteria.
Science | 2001
Shunyuan Xiao; Simon Ellwood; Ozer Calis; Elaine Patrick; Tianxian Li; Mark J. Coleman; John Turner
Plant Journal | 2005
Shunyuan Xiao; Ozer Calis; Elaine Patrick; Guangmin Zhang; Piyavadee Charoenwattana; Paul Muskett; Jane E. Parker; John Turner
Molecular Biology and Evolution | 2004
Shunyuan Xiao; Brent C. Emerson; Kumrop Ratanasut; Elaine Patrick; Carmel O'Neill; Ian Bancroft; John Turner