Elaine Waldron
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elaine Waldron.
The Journal of Neuroscience | 2007
Sabine Ring; Sascha W. Weyer; Susanne B. Kilian; Elaine Waldron; Claus U. Pietrzik; Mikhail A. Filippov; Jochen Herms; Christian J. Buchholz; Christopher B. Eckman; Martin Korte; David P. Wolfer; Ulrike Müller
It is well established that the proteolytic processing of the β-amyloid precursor protein (APP) generates β-amyloid (Aβ), which plays a central role in the pathogenesis of Alzheimers disease (AD). In contrast, the physiological role of APP and of its numerous proteolytic fragments and the question of whether a loss of these functions contributes to AD are still unknown. To address this question, we replaced the endogenous APP locus by gene-targeted alleles and generated two lines of knock-in mice that exclusively express APP deletion variants corresponding either to the secreted APP ectodomain (APPsα) or to a C-terminal (CT) truncation lacking the YENPTY interaction motif (APPΔCT15). Interestingly, the ΔCT15 deletion resulted in reduced turnover of holoAPP, increased cell surface expression, and strongly reduced Aβ levels in brain, likely because of reduced processing in the endocytic pathway. Most importantly, we demonstrate that in both APP knock-in lines the expression of APP N-terminal domains either grossly attenuated or completely rescued the prominent deficits of APP knock-out mice, such as reductions in brain and body weight, grip strength deficits, alterations in circadian locomotor activity, exploratory activity, and the impairment in spatial learning and long-term potentiation. Together, our data suggest that the APP C terminus is dispensable and that APPsα is sufficient to mediate the physiological functions of APP assessed by these tests.
Journal of Biological Chemistry | 2009
Tamara Ratovitski; Marjan Gucek; Haibing Jiang; Ekaterine Chighladze; Elaine Waldron; James D'Ambola; Zhipeng Hou; Yideng Liang; Michelle A. Poirier; Ricky R. Hirschhorn; Rona K Graham; Michael R Hayden; Robert N. Cole; Christopher A. Ross
Huntingtin proteolysis is implicated in Huntington disease pathogenesis, yet, the nature of huntingtin toxic fragments remains unclear. Huntingtin undergoes proteolysis by calpains and caspases within an N-terminal region between amino acids 460 and 600. We have focused on proteolytic steps producing shorter N-terminal fragments, which we term cp-1 and cp-2 (distinct from previously described cp-A/cp-B). We used HEK293 cells to express the first 511 residues of huntingtin and further define the cp-1 and cp-2 cleavage sites. Based on epitope mapping with huntingtin-specific antibodies, we found that cp-1 cleavage occurs between residues 81 and 129 of huntingtin. Affinity and size exclusion chromatography were used to further purify huntingtin cleavage products and enrich for the cp-1/cp-2 fragments. Using mass spectrometry, we found that the cp-2 fragment is generated by cleavage of huntingtin at position Arg167. This site was confirmed by deletion analysis and specific detection with a custom-generated cp-2 site neo-epitope antibody. Furthermore, alterations of this cleavage site resulted in a decrease in toxicity and an increase in aggregation of huntingtin in neuronal cells. These data suggest that cleavage of huntingtin at residue Arg167 may mediate mutant huntingtin toxicity in Huntington disease.
Journal of Biological Chemistry | 2008
Anne M. Martin; Christoph R.W. Kuhlmann; Svenja V. Trossbach; Sebastian Jaeger; Elaine Waldron; Anton Roebroek; Heiko J. Luhmann; Alexander Laatsch; Sascha Weggen; Volkmar Lessmann; Claus U. Pietrzik
The low density lipoprotein receptor-related protein 1 (LRP1) emerges to play fundamental roles in cellular signaling pathways in the brain. One of its prominent ligands is the serine proteinase tissue-type plasminogen activator (tPA), which has been shown to act as a key activator of neuronal mitogen-activated protein kinase pathways via the N-methyl-d-aspartate (NMDA) receptor. However, here we set out to examine whether LRP1 and the NMDA receptor might eventually act in a combined fashion to mediate tPA downstream signaling. By blocking tPA from binding to LRP1 using the receptor-associated protein, we were able to completely inhibit NMDA receptor activation. Additionally, inhibition of NMDA receptor calcium influx with MK-801 resulted in dramatic reduction of tPA-mediated downstream signaling. This indicates a functional interaction between the two receptors, since both experimental approaches resulted in strongly reduced calcium influx and Erk1/2 phosphorylation. Additionally, we were able to inhibit Erk1/2 activation by competing for the LRP1 C-terminal binding motif with a truncated PSD95 construct resembling its PDZ III domain. Furthermore, we identified the distal NPXY amino acid motif in the C terminus of LRP1 as the crucial element for LRP1-NMDA receptor interaction via the adaptor protein PSD95. These results provide new insights into the mechanism of a tPA-induced, LRP1-mediated gating mechanism for NMDA receptors.
Neurobiology of Disease | 2008
Elaine Waldron; Catherine Heilig; Andrea Schweitzer; Nirupa Nadella; Sebastian Jaeger; Anne M. Martin; Sascha Weggen; Klaudia Brix; Claus U. Pietrzik
The amyloid beta peptide (A beta) is a central player in Alzheimers disease (AD) pathology. A beta liberation depends on APP cleavage by beta- and gamma-secretases. The low density lipoprotein receptor related protein 1 (LRP1) was shown to mediate APP processing at multiple steps. Newly synthesized LRP1 can interact with APP, implying an interaction between these two proteins early in the secretory pathway. We wanted to investigate whether LRP1 mediates APP trafficking along the secretory pathway, and, if so, whether it affects APP processing. Indeed, the early trafficking of APP within the secretory pathway is strongly influenced by its interaction with the C-terminal domain of LRP1. The LRP1-construct expressing an ER-retention motif, LRP-CT KKAA, had the capacity to retard APP traffic to early secretory compartments. In addition, we provide evidence that APP metabolism occurs in close conjunction with LRP1 trafficking, highlighting a new role of lipoprotein receptors in neurodegenerative diseases.
Journal of Neurochemistry | 2009
Sebastian Jäger; Stefanie Leuchtenberger; Anne M. Martin; Eva Czirr; Johanna Wesselowski; Marco Dieckmann; Elaine Waldron; Carsten Korth; Edward H. Koo; Michael T. Heneka; Sascha Weggen; Claus U. Pietrzik
The Swedish mutation within the amyloid precursor protein (APP) causes early‐onset Alzheimer’s disease due to increased cleavage of APP by BACE1. While β‐secretase shedding of Swedish APP (APPswe) largely results from an activity localized in the late secretory pathway, cleavage of wild‐type APP occurs mainly in endocytic compartments. However, we show that liberation of Aβ from APPswe is still dependent on functional internalization from the cell surface. Inspite the unchanged overall β‐secretase cleaved soluble APP released from APPswe secretion, mutations of the APPswe internalization motif strongly reduced C99 levels and substantially decreased Aβ secretion. We point out that α‐secretase activity‐mediated conversion of C99 to C83 is the main cause of this Aβ reduction. Furthermore, we demonstrate that α‐secretase cleavage of C99 even contributes to the reduction of Aβ secretion of internalization deficient wild‐type APP. Therefore, inhibition of α‐secretase cleavage increased Aβ secretion through diminished conversion of C99 to C83 in APP695, APP695swe or C99 expressing cells.
Experimental Cell Research | 2008
Elaine Waldron; Simone Isbert; Andreas Kern; Sebastian Jaeger; Anne M. Martin; Sébastien S. Hébert; Christian Behl; Sascha Weggen; Bart De Strooper; Claus U. Pietrzik
A sequence of amyloid precursor protein (APP) cleavages culminates in the sequential release of the APP intracellular domain (AICD) and the amyloid beta peptide (Abeta) and/or p3 fragment. One of the environmental factors favouring the accumulation of AICD appears to be a rise in intracellular pH. Here we further identified the metabolism and subcellular localization of artificially expressed constructs under such conditions. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely cleaved from C83. While the AICD surplus was unable to further activate transcription of a luciferase reporter via a Gal4-DNA-binding domain, it failed entirely via the endogenous promoter regions of proposed target genes, APP and KAI1. The lack of a specific transactivation potential was also demonstrated by the unchanged levels of target gene mRNA. However, rather than translocating to the nucleus, the AICD surplus remains membrane tethered or free in the cytosol where it interacts with Fe65. Therefore we provide strong evidence that an increase in AICD generation does not directly promote gene activation of previously proposed target genes.
Journal of Biological Chemistry | 2011
Tamara Ratovitski; Ekaterine Chighladze; Elaine Waldron; Ricky R. Hirschhorn; Christopher A. Ross
N-terminal proteolysis of huntingtin is thought to be an important mediator of HD pathogenesis. The formation of short N-terminal fragments of huntingtin (cp-1/cp-2, cp-A/cp-B) has been demonstrated in cells and in vivo. We previously mapped the cp-2 cleavage site by mass spectrometry to position Arg167 of huntingtin. The proteolytic enzymes generating short N-terminal fragments of huntingtin remain unknown. To search for such proteases, we conducted a genome-wide screen using an RNA-silencing approach and an assay for huntingtin proteolysis based on the detection of cp-1 and cp-2 fragments by Western blotting. The primary screen was carried out in HEK293 cells, and the secondary screen was carried out in neuronal HT22 cells, transfected in both cases with a construct encoding the N-terminal 511 amino acids of mutant huntingtin. For additional validation of the hits, we employed a complementary assay for proteolysis of huntingtin involving overexpression of individual proteases with huntingtin in two cell lines. The screen identified 11 enzymes, with two major candidates to carry out the cp-2 cleavage, bleomycin hydrolase (BLMH) and cathepsin Z, which are both cysteine proteases of a papain-like structure. Knockdown of either protease reduced cp-2 cleavage, and ameliorated mutant huntingtin induced toxicity, whereas their overexpression increased the cp-2 cleavage. Both proteases partially co-localized with Htt in the cytoplasm and within or in association with early and late endosomes, with some nuclear co-localization observed for cathepsin Z. BLMH and cathepsin Z are expressed in the brain and have been associated previously with neurodegeneration. Our findings further validate the cysteine protease family, and BLMH and cathepsin Z in particular, as potential novel targets for HD therapeutics.
Neurodegenerative Diseases | 2006
Elaine Waldron; Sebastian Jaeger; Claus U. Pietrzik
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder, characterized by neuronal loss, neurofibrillary tangle formation and the extracellular deposition of amyloid-β (Aβ) plaques. The amyloid precursor protein (APP) and the enzymes responsible for Aβ generation seem to be the base elements triggering the destructive processes. Initially, the low-density lipoprotein receptor-related protein (LRP) was genetically linked to AD and later it emerged to impact on many fundamental events related to this disease. LRP is not only involved in Aβ clearance but is also the major receptor of several AD-associated ligands, e.g. apolipoprotein E and α2-macroglobulin. APP processing is mediated by LRP on many levels. Enhanced APP internalization through LRP decreases cell surface APP levels and thereby reduces APP shedding. As a consequence of increased APP internalization LRP enhances Aβ secretion. These effects could be attributed to the cytoplasmic tails of LRP and APP. The receptors bind via their NPXY motifs to the two PID domains of FE65 and form a tripartite complex. However, it appears that the second NPVY motif of LRP is the one responsible for the observed influence over APP metabolism. A more in-depth knowledge of the mechanisms regulating APP cleavage may offer additional targets for therapeutic intervention.
Alzheimers & Dementia | 2006
Elaine Waldron; Catherine Heilig; Andrea Schweitzer; Claus U. Pietrzik
(PrPc), the two culprit membrane proteins in AD and prion-associated pathologies respectively, are similarly processed in the middle of their toxic sequence. Indeed, the so-called a-secretase cleavage precludes the integrity of the amyloid-b peptide (Ab) and the 106-126 sequence of PrPc. The recent identification of two members of the disintegrin family of proteases, ADAM10 and ADAM17, as constitutive and PKC-regulated a-secretase activities cleaving both bAPP and PrPc further reinforced the link between Alzheimer’s and prion diseases. We showed very recently that a third ADAM protease, namely ADAM9, also participates in the processing of bAPP and PrPc. However, ADAM9 does not directly cleave bAPP and PrPc but rather acts through the modulation of ADAM10 likely by contributing to its shedding. A well-documented aspect of the regulation of the a-secretase pathway concerns its activation by protein kinase C agonists. Interestingly, it has been suggested that some but not all PKC isozymes contribute the cleavage of bAPP at the a-site. We established that the conventional a and b as well as the novel e isoforms are involved in the regulated cleavage of both bAPP and PrPc while a fourth member, the novel PKCd, seems to only modulate PrPc processing. This tends to prove that the molecular mechanisms governing the PKC-mediated cleavage of both proteins, although very similar, display subtle differences. Finally, in the search for the receptors and ligands acting upstream of PKC activation which ultimately leads to the up-regulation of PrPc processing, we demonstrated that the M1/M3 subclass of muscarinic receptors which are coupled to PLC/PKC, but not the M2/M4 (linked to adenylate cyclase/ PKA) was a key component of the PKC-mediated PrPc processing. Altogether, these data suggest that any medication aiming at increasing the a-secretase cleavage could ameliorate two apparently unrelated groups of diseases.
Journal of Biological Chemistry | 2005
Alberto Lleó; Elaine Waldron; Lauren Herl; Michele M. Tangredi; Ithan D. Peltan; Dudley K. Strickland; Edward H. Koo; Bradley T. Hyman; Claus U. Pietrzik; Oksana Berezovska