Elazar Zelzer
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elazar Zelzer.
The EMBO Journal | 1998
Elazar Zelzer; Yinon Levy; Chaim Kahana; Ben-Zion Shilo; Menachem Rubinstein; Batya Cohen
Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glut1 and Glut3, several glycolytic enzymes, nitric oxide synthase, tyrosine hydroxylase, erythropoietin and vascular endothelial growth factor (VEGF). Induction of these genes is mediated by a common basic helix–loop–helix‐PAS transcription complex, the hypoxia‐inducible factor‐1α (HIF‐1α)/aryl hydrocarbon nuclear translocator (ARNT). Insulin also induces some of these genes; however, the underlying mechanism is unestablished. We report here that insulin shares with hypoxia the ability to induce the HIF‐1α/ARNT transcription complex in various cell types. This induction was demonstrated by electrophoretic mobility shift of the hypoxia response element (HRE), and abolished by specific antisera to HIF‐1α and ARNT, and by transcription activation of HRE reporter vectors. Furthermore, basal and insulin‐induced expression of Glut1, Glut3, aldolase A, phosphoglycerate kinase and VEGF was reduced in cells having a defective ARNT. Similarly, the insulin‐induced activation of HRE reporter vectors and VEGF was impaired in these cells and was rescued by re‐introduction of ARNT. Finally, insulin‐like growth factor‐I (IGF‐I) also induced the HIF‐1α/ARNT transcription complex. These observations establish a novel signal transduction pathway of insulin and IGF‐I and broaden considerably the scope of activity of HIF‐1α/ARNT.
Development | 2004
Elazar Zelzer; Roni Mamluk; Napoleone Ferrara; Randall S. Johnson; Ernestina Schipani; Björn Olsen
To directly examine the role of vascular endothelial growth factor (VEGFA) in cartilage development, we conditionally knocked out Vegfa in chondrocytes, using the Col2a1 promoter to drive expression of Cre recombinase. Our study of Vegfa conditional knockout (CKO) mice provides new in-vivo evidence for two important functions of VEGFA in bone formation. First, VEGFA plays a significant role in both early and late stages of cartilage vascularization, since Vegfa CKO mice showed delayed invasion of blood vessels into primary ossification centers and delayed removal of terminal hypertrophic chondrocytes. Second, VEGFA is crucial for chondrocyte survival, since massive cell death was seen in joint and epiphyseal regions of Vegfa CKO endochondral bones. Chondrocytes in these regions were found to upregulate expression of Vegfa in wild-type mice at the time when massive cell death occurred in the Vegfa CKO mice. The expression of the VEGFA receptors Npr1 and Npr2 in epiphyseal chondrocytes and lack of blood vessel reduction in the vicinity of the cartilaginous elements in the Vegfa CKO mice raise the possibility that the observed cell death is the result of a direct involvement of VEGFA in chondrocyte survival. Interestingly, the extensive cell death seen in Vegfa CKO null bones had a striking similarity to the cell death phenotype observed when hypoxia-inducible factor 1α (Hif1a) expression was abolished in developing cartilage. This similarity of cell death phenotypes and the deficient VEGFA production in Hif1a null epiphyseal chondrocytes demonstrate that HIF1α and VEGFA are components of a key pathway to support chondrocyte survival during embryonic bone development.
Mechanisms of Development | 2001
Elazar Zelzer; Donald J. Glotzer; Christine Hartmann; David D. Thomas; Naomi Fukai; Shay Soker; Björn Olsen
Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis during development, but little is known about the factors that control its expression. We provide the first example of tissue specific loss of VEGF expression as a result of targeting a single gene, Cbfa1/Runx2. During endochondral bone formation, invasion of blood vessels into cartilage is associated with upregulation of VEGF in hypertrophic chondrocytes and increased expression of VEGF receptors in the perichondrium. This upregulation is lacking in Cbfa1 deficient mice, and cartilage angiogenesis does not occur. Finally, over-expression of Cbfa1 in fibroblasts induces an increase in their VEGF mRNA level and protein production by stimulating VEGF transcription. The results demonstrate that Cbfa1 is a necessary component of a tissue specific genetic program that regulates VEGF during endochondral bone formation.
Nature | 2003
Elazar Zelzer; Björn Olsen
We walk, run, work and play, paying little attention to our bones, their joints and their muscle connections, because the system works. Evolution has refined robust genetic mechanisms for skeletal development and growth that are able to direct the formation of a complex, yet wonderfully adaptable organ system. How is it done? Recent studies of rare genetic diseases have identified many of the critical transcription factors and signalling pathways specifying the normal development of bones, confirming the wisdom of William Harvey when he said: “nature is nowhere accustomed more openly to display her secret mysteries than in cases where she shows traces of her workings apart from the beaten path”.
Development | 2007
Roy Amarilio; Sergey Viukov; Amnon Sharir; Idit Eshkar-Oren; Randall S. Johnson; Elazar Zelzer
During early stages of limb development, the vasculature is subjected to extensive remodeling that leaves the prechondrogenic condensation avascular and, as we demonstrate hereafter, hypoxic. Numerous studies on a variety of cell types have reported that hypoxia has an inhibitory effect on cell differentiation. In order to investigate the mechanism that supports chondrocyte differentiation under hypoxic conditions, we inactivated the transcription factor hypoxia-inducible factor 1α (HIF1α) in mouse limb bud mesenchyme. Developmental analysis of Hif1α-depleted limbs revealed abnormal cartilage and joint formation in the autopod, suggesting that HIF1α is part of a mechanism that regulates the differentiation of hypoxic prechondrogenic cells. Dramatically reduced cartilage formation in Hif1α-depleted micromass culture cells under hypoxia provided further support for the regulatory role of HIF1α in chondrogenesis. Reduced expression of Sox9, a key regulator of chondrocyte differentiation, followed by reduction of Sox6, collagen type II and aggrecan in Hif1α-depleted limbs raised the possibility that HIF1α regulation of Sox9 is necessary under hypoxic conditions for differentiation of prechondrogenic cells to chondrocytes. To study this possibility, we targeted Hif1α expression in micromass cultures. Under hypoxic conditions, Sox9 expression was increased twofold relative to its expression in normoxic condition; this increment was lost in the Hif1α-depleted cells. Chromatin immunoprecipitation demonstrated direct binding of HIF1α to the Sox9 promoter, thus supporting direct regulation of HIF1α on Sox9 expression. This work establishes for the first time HIF1α as a key component in the genetic program that regulates chondrogenesis by regulating Sox9 expression in hypoxic prechondrogenic cells.
Current Topics in Developmental Biology | 2004
Elazar Zelzer; Björn Olsen
Publisher Summary This chapter discusses the developmental roles of vascular endothelial growth factor (VEGF) in skeletal morphogenesis, speculates on the future directions of research in this area, and describes some of the challenges in the field. VEGF regulates osteoclastic differentiation, migration, and activity. VEGF is, therefore, a key coordinator of the entire process. VEGF is necessary for osteoclastic activity both at the stage when the primary ossification center is established and later during bone growth. A number of studies have led to the identification of VEGF as a critical factor for the survival of chondrocytes. Several factors with important roles in regulating bone formation also induce the expression of VEGF by osteoblasts. Prostaglandins E1 and E2, BMP-4, BMP-6, BMP-7, FGF-2, TGF-β, endothelin-1, IGF-1, and vitamin D3 can all induce VEGF expression in osteoblasts by activating a variety of signaling pathways. Bone fractures can heal in two divergent ways, similar to the two ways of forming bone during embryonic development. Stabilized fractures heal by intramembranous ossification, and unstable fractures undergo endochondral ossification. The similarity between the embryonic bone development and repair of fractured bones, coupled with the finding that VEGF is expressed at sites of bone fracture, suggests that VEGF is involved in bone repair as it is in bone development.
Developmental Cell | 2009
Joy Kahn; Yulia Shwartz; Einat Blitz; Sharon Krief; Amnon Sharir; Dario Breitel; Revital Rattenbach; Frédéric Relaix; Pascal Maire; Ryan B. Rountree; David M. Kingsley; Elazar Zelzer
During embryogenesis, organ development is dependent upon maintaining appropriate progenitor cell commitment. Synovial joints develop from a pool of progenitor cells that differentiate into various cell types constituting the mature joint. The involvement of the musculature in joint formation has long been recognized. However, the mechanism by which the musculature regulates joint formation has remained elusive. In this study, we demonstrate, utilizing various murine models devoid of limb musculature or its contraction, that the contracting musculature is fundamental in maintaining joint progenitors committed to their fate, a requirement for correct joint cavitation and morphogenesis. Furthermore, contraction-dependent activation of beta-catenin, a key modulator of joint formation, provides a molecular mechanism for this regulation. In conclusion, our findings provide the missing link between progenitor cell fate determination and embryonic movement, two processes shown to be essential for correct organogenesis.
Development | 2010
Ronen Schweitzer; Elazar Zelzer; Talila Volk
The formation of the musculoskeletal system represents an intricate process of tissue assembly involving heterotypic inductive interactions between tendons, muscles and cartilage. An essential component of all musculoskeletal systems is the anchoring of the force-generating muscles to the solid support of the organism: the skeleton in vertebrates and the exoskeleton in invertebrates. Here, we discuss recent findings that illuminate musculoskeletal assembly in the vertebrate embryo, findings that emphasize the reciprocal interactions between the forming tendons, muscle and cartilage tissues. We also compare these events with those of the corresponding system in the Drosophila embryo, highlighting distinct and common pathways that promote efficient locomotion while preserving the form of the organism.
Developmental Cell | 2009
Einat Blitz; Sergey Viukov; Amnon Sharir; Yulia Shwartz; Jenna L. Galloway; Brian A. Pryce; Randy L. Johnson; Clifford J. Tabin; Ronen Schweitzer; Elazar Zelzer
During the assembly of the musculoskeletal system, bone ridges provide a stable anchoring point and stress dissipation for the attachment of muscles via tendons to the skeleton. In this study, we investigate the development of the deltoid tuberosity as a model for bone ridge formation. We show that the deltoid tuberosity develops through endochondral ossification in a two-phase process: initiation is regulated by a signal from the tendons, whereas the subsequent growth phase is muscle dependent. We then show that the transcription factor scleraxis (SCX) regulates Bmp4 in tendon cells at their insertion site. The inhibition of deltoid tuberosity formation and several other bone ridges in embryos in which Bmp4 expression was blocked specifically in Scx-expressing cells implicates BMP4 as a key mediator of tendon effects on bone ridge formation. This study establishes a mechanistic basis for tendon-skeleton regulatory interactions during musculoskeletal assembly and bone secondary patterning.
Journal of Structural Biology | 2011
Julia Mahamid; Amnon Sharir; Dvir Gur; Elazar Zelzer; Lia Addadi; Steve Weiner
Bone is the most widespread mineralized tissue in vertebrates and its formation is orchestrated by specialized cells - the osteoblasts. Crystalline carbonated hydroxyapatite, an inorganic calcium phosphate mineral, constitutes a substantial fraction of mature bone tissue. Yet key aspects of the mineral formation mechanism, transport pathways and deposition in the extracellular matrix remain unidentified. Using cryo-electron microscopy on native frozen-hydrated tissues we show that during mineralization of developing mouse calvaria and long bones, bone-lining cells concentrate membrane-bound mineral granules within intracellular vesicles. Elemental analysis and electron diffraction show that the intracellular mineral granules consist of disordered calcium phosphate, a highly metastable phase and a potential precursor of carbonated hydroxyapatite. The intracellular mineral contains considerably less calcium than expected for synthetic amorphous calcium phosphate, suggesting the presence of a cellular mechanism by which phosphate entities are first formed and thereafter gradually sequester calcium within the vesicles. We thus demonstrate that in vivo osteoblasts actively produce disordered mineral packets within intracellular vesicles for mineralization of the extracellular developing bone tissue. The use of a highly disordered precursor mineral phase that later crystallizes within an extracellular matrix is a strategy employed in the formation of fish fin bones and by various invertebrate phyla. This therefore appears to be a widespread strategy used by many animal phyla, including vertebrates.