Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elchin Jafarov is active.

Publication


Featured researches published by Elchin Jafarov.


Environmental Research Letters | 2016

Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

Benjamin W. Abbott; Jeremy B. Jones; Edward A. G. Schuur; F. Stuart Chapin; William B. Bowden; M. Syndonia Bret-Harte; Howard E. Epstein; Mike D. Flannigan; Tamara K. Harms; Teresa N. Hollingsworth; Michelle C. Mack; A. David McGuire; Susan M. Natali; Adrian V. Rocha; Suzanne E. Tank; Merritt R. Turetsky; Jorien E. Vonk; Kimberly P. Wickland; George R. Aiken; Heather D. Alexander; Rainer M. W. Amon; Brian W. Benscoter; Yves Bergeron; Kevin Bishop; Olivier Blarquez; Ben Bond-Lamberty; Amy L. Breen; Ishi Buffam; Yihua Cai; Christopher Carcaillet

As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release w ...


Philosophical Transactions of the Royal Society A | 2015

A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback

C. Koven; Edward A. G. Schuur; Christina Schädel; Theodore J. Bohn; Eleanor J. Burke; Guangsheng Chen; Xiaodong Chen; Philippe Ciais; Guido Grosse; Jennifer W. Harden; Daniel J. Hayes; Gustaf Hugelius; Elchin Jafarov; Gerhard Krinner; Peter Kuhry; David M. Lawrence; Andrew H. MacDougall; Sergey S. Marchenko; A. D. McGuire; Susan M. Natali; D. J. Nicolsky; David Olefeldt; Shushi Peng; Vladimir E. Romanovsky; Kevin Schaefer; Jens Strauss; Claire C. Treat; Merritt R. Turetsky

We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 Pg C °C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.


Environmental Research Letters | 2013

The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

Elchin Jafarov; Vladimir E. Romanovsky; Hélène Genet; A. D. McGuire; Sergey S. Marchenko

Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling‐sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, 80 cm) and upland (with thin organic layers, 30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.


Environmental Research Letters | 2015

Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

Jiafu Mao; Wenting Fu; Xiaoying Shi; Daniel M. Ricciuto; Joshua B. Fisher; Robert E. Dickinson; Yaxing Wei; Willis Shem; Shilong Piao; Kaicun Wang; Christopher R. Schwalm; Hanqin Tian; Mingquan Mu; Altaf Arain; Philippe Ciais; R. B. Cook; Yongjiu Dai; Daniel J. Hayes; Forrest M. Hoffman; Maoyi Huang; Suo Huang; Deborah N. Huntzinger; Akihiko Ito; Atul K. Jain; Anthony W. King; Huimin Lei; Chaoqun Lu; Anna M. Michalak; N. C. Parazoo; Changhui Peng

We examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982 to 2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increasing trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded decreasing trends in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increasing nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.


Global Biogeochemical Cycles | 2016

Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009

A. David McGuire; Charles D. Koven; David M. Lawrence; Joy S. Clein; Jiangyang Xia; Christian Beer; Eleanor J. Burke; Guangsheng Chen; Xiaodong Chen; Christine Delire; Elchin Jafarov; Andrew H. MacDougall; Sergey S. Marchenko; D. J. Nicolsky; Shushi Peng; Annette Rinke; Kazuyuki Saito; Wenxin Zhang; Ramdane Alkama; Theodore J. Bohn; Philippe Ciais; Altug Ekici; Isabelle Gouttevin; Tomohiro Hajima; Daniel J. Hayes; Duoying Ji; Gerhard Krinner; Dennis P. Lettenmaier; Yiqi Luo; Paul A. Miller

A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3 m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8 × 103 km2 yr−1). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954 Tg C yr−1 between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982–2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models. (Less)


Geophysical Research Letters | 2014

InSAR detects increase in surface subsidence caused by an Arctic tundra fire

Lin Liu; Elchin Jafarov; Kevin Schaefer; Benjamin M. Jones; Howard A. Zebker; Christopher A. Williams; John Rogan; Tingjun Zhang

Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.


Remote Sensing | 2015

Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska Using Interferometric Synthetic Aperture Radar

Kevin Schaefer; Lin Liu; Andrew D. Parsekian; Elchin Jafarov; A.C. Chen; Tingjun Zhang; Alessio Gusmeroli; Santosh Panda; Howard A. Zebker; Tim Schaefer

Active layer thickness (ALT) is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ temperature sensors, or other ground-based observations. Here we evaluated the Remotely Sensed Active Layer Thickness (ReSALT) product that uses the Interferometric Synthetic Aperture Radar technique to measure seasonal surface subsidence and infer ALT around Barrow, Alaska. We compared ReSALT with ground-based ALT obtained using probing and calibrated, 500 MHz Ground Penetrating Radar at multiple sites around Barrow. ReSALT accurately reproduced observed ALT within uncertainty of the GPR and probing data in ~76% of the study area. However, ReSALT was less than observed ALT in ~22% of the study area with well-drained soils and in ~1% of the area where soils contained gravel. ReSALT was greater than observed ALT in some drained thermokarst lake basins representing ~1% of the area. These results indicate remote sensing techniques based on InSAR could be an effective way to measure and monitor ALT over large areas on the Arctic coastal plain.


Geophysical Research Letters | 2018

Permafrost Stores a Globally Significant Amount of Mercury

Paul F. Schuster; Kevin Schaefer; George R. Aiken; Ronald C. Antweiler; John F. DeWild; Joshua D. Gryziec; Alessio Gusmeroli; Gustaf Hugelius; Elchin Jafarov; David P. Krabbenhoft; Lin Liu; Nicole M. Herman-Mercer; Cuicui Mu; David A. Roth; Tim Schaefer; Robert G. Striegl; Kimberly P. Wickland; Tingjun Zhang

Changing climate in northern regions is causing permafrost to thaw with major implications for the global mercury (Hg) cycle. We estimated Hg in permafrost regions based on in situ measurements of ...


Proceedings of the National Academy of Sciences of the United States of America | 2018

Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change

A. David McGuire; David M. Lawrence; Charles D. Koven; Joy S. Clein; Eleanor J. Burke; Guangsheng Chen; Elchin Jafarov; Andrew H. MacDougall; Sergey S. Marchenko; D. J. Nicolsky; Shushi Peng; Annette Rinke; Philippe Ciais; Isabelle Gouttevin; Daniel J. Hayes; Duoying Ji; Gerhard Krinner; John C. Moore; Vladimir E. Romanovsky; Christina Schädel; Kevin Schaefer; Edward A. G. Schuur; Qianlai Zhuang

Significance We applied regional and global-scale biogeochemical models that coupled thaw depth with soil carbon exposure to evaluate the dependence of the evolution of future carbon storage in the northern permafrost region on the trajectory of climate change. Our analysis indicates that the northern permafrost region could act as a net sink for carbon under more aggressive climate change mitigation pathways. Under less aggressive pathways, the region would likely act as a source of soil carbon to the atmosphere, but substantial net losses would not occur until after 2100. These results suggest that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon–climate feedback. We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon–climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (1015-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. This assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon–climate feedback.


Earth System Science Data Discussions | 2018

A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA

Kang Wang; Elchin Jafarov; Kevin Schaefer; Irina Overeem; Vladimir E. Romanovsky; Gary D. Clow; Frank E. Urban; William L. Cable; Mark Piper; Christopher R. Schwalm; Tingjun Zhang; A. L. Kholodov; Pamela Sousanes; Michael Loso; Kenneth Hill

Recent observations of near-surface soil temperatures over the circumpolar Arctic show accelerated warming of permafrost-affected soils. A comprehensive near-surface permafrost temperature dataset is critical to better understand climate impacts and to constrain permafrost thermal conditions and spatial distribution in land system models. We compiled a soil temperatures dataset from 72 monitoring stations in Alaska using data collected by the U.S. Geological Survey, the National Park Service, and the University of Alaska-Fairbanks permafrost monitoring networks. The array of monitoring stations spans 5 a large range of latitudes from 60.9◦N to 71.3◦N and elevations from near sea level to 1327 m, comprising tundra and boreal forest regions. This dataset consists of monthly ground temperatures at depth up to 1 m, volumetric soil water content, snow depth, and air temperature during 1997 2016. Due to the remoteness and harsh conditions, many stations have missing data. Overall, this dataset consists of 41,667 monthly values. These data have been quality controlled in collection and processing. Meanwhile, we implemented data harmonization validation for the processed dataset. The final product (PF-AK, v0.1) is 10 available at the Arctic Data Center (https://doi.org/10.18739/A2KG55).

Collaboration


Dive into the Elchin Jafarov's collaboration.

Top Co-Authors

Avatar

Kevin Schaefer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Liu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Vladimir E. Romanovsky

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Santosh Panda

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

A. David McGuire

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. J. Nicolsky

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge