Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. J. Nicolsky is active.

Publication


Featured researches published by D. J. Nicolsky.


Philosophical Transactions of the Royal Society A | 2015

A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback

C. Koven; Edward A. G. Schuur; Christina Schädel; Theodore J. Bohn; Eleanor J. Burke; Guangsheng Chen; Xiaodong Chen; Philippe Ciais; Guido Grosse; Jennifer W. Harden; Daniel J. Hayes; Gustaf Hugelius; Elchin Jafarov; Gerhard Krinner; Peter Kuhry; David M. Lawrence; Andrew H. MacDougall; Sergey S. Marchenko; A. D. McGuire; Susan M. Natali; D. J. Nicolsky; David Olefeldt; Shushi Peng; Vladimir E. Romanovsky; Kevin Schaefer; Jens Strauss; Claire C. Treat; Merritt R. Turetsky

We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 Pg C °C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.


Philosophical Transactions of the Royal Society A | 2015

The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice.

Natalia Shakhova; Igor Semiletov; V. I. Sergienko; Leopold Lobkovsky; Vladimir Yusupov; A. N. Salyuk; Alexander Salomatin; Denis Chernykh; Denis Kosmach; Gleb Panteleev; D. J. Nicolsky; Vladimir A. Samarkin; Samantha B. Joye; Alexander Charkin; Oleg Dudarev; Alexander Meluzov; Örjan Gustafsson

Sustained release of methane (CH4) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH4 from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our latest observations, we show that CH4 emissions from this shelf are likely to be determined by the state of subsea permafrost degradation. We observed CH4 emissions from two previously understudied areas of the ESAS: the outer shelf, where subsea permafrost is predicted to be discontinuous or mostly degraded due to long submergence by seawater, and the near shore area, where deep/open taliks presumably form due to combined heating effects of seawater, river run-off, geothermal flux and pre-existing thermokarst. CH4 emissions from these areas emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing and decrease in ice extent could result in a significant increase in CH4 emissions from the ESAS.


Global Biogeochemical Cycles | 2016

Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009

A. David McGuire; Charles D. Koven; David M. Lawrence; Joy S. Clein; Jiangyang Xia; Christian Beer; Eleanor J. Burke; Guangsheng Chen; Xiaodong Chen; Christine Delire; Elchin Jafarov; Andrew H. MacDougall; Sergey S. Marchenko; D. J. Nicolsky; Shushi Peng; Annette Rinke; Kazuyuki Saito; Wenxin Zhang; Ramdane Alkama; Theodore J. Bohn; Philippe Ciais; Altug Ekici; Isabelle Gouttevin; Tomohiro Hajima; Daniel J. Hayes; Duoying Ji; Gerhard Krinner; Dennis P. Lettenmaier; Yiqi Luo; Paul A. Miller

A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3 m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8 × 103 km2 yr−1). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954 Tg C yr−1 between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982–2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models. (Less)


Proceedings of the National Academy of Sciences of the United States of America | 2017

Climate change damages to Alaska public infrastructure and the economics of proactive adaptation

April M. Melvin; Peter A. Larsen; Brent Boehlert; James E. Neumann; Paul Chinowsky; Xavier Espinet; Jeremy Martinich; Matthew S. Baumann; Lisa Rennels; Alexandra Bothner; D. J. Nicolsky; Sergey S. Marchenko

Significance Climate change in Alaska is causing widespread environmental change that is damaging critical infrastructure. As climate change continues, infrastructure may become more vulnerable to damage, increasing risks to residents and resulting in large economic impacts. We quantified the potential economic damages to Alaska public infrastructure resulting from climate-driven changes in flooding, precipitation, near-surface permafrost thaw, and freeze–thaw cycles using high and low future climate scenarios. Additionally, we estimated coastal erosion losses for villages known to be at risk. Our findings suggest that the largest climate damages will result from flooding of roads followed by substantial near-surface permafrost thaw-related damage to buildings. Proactive adaptation efforts as well as global action to reduce greenhouse gas emissions could considerably reduce these damages. Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled


Natural Hazards | 2017

Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental validation, and case studies off the US East Coast

Stephan T. Grilli; Mike Shelby; Olivier Kimmoun; Guillaume Dupont; D. J. Nicolsky; Gangfeng Ma; James T. Kirby; Fengyan Shi

5.5 billion (2015 dollars, 3% discount) for RCP8.5 and


Pure and Applied Geophysics | 2015

Runup of Nonlinear Long Waves in Trapezoidal Bays: 1-D Analytical Theory and 2-D Numerical Computations

M. W. Harris; D. J. Nicolsky; Efim Pelinovsky; Alexei Rybkin

4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by


Proceedings of the National Academy of Sciences of the United States of America | 2018

Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change

A. David McGuire; David M. Lawrence; Charles D. Koven; Joy S. Clein; Eleanor J. Burke; Guangsheng Chen; Elchin Jafarov; Andrew H. MacDougall; Sergey S. Marchenko; D. J. Nicolsky; Shushi Peng; Annette Rinke; Philippe Ciais; Isabelle Gouttevin; Daniel J. Hayes; Duoying Ji; Gerhard Krinner; John C. Moore; Vladimir E. Romanovsky; Christina Schädel; Kevin Schaefer; Edward A. G. Schuur; Qianlai Zhuang

1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to


Pure and Applied Geophysics | 2017

Run-Up of Long Waves in Piecewise Sloping U-Shaped Bays

Dalton Anderson; Matthew Harris; Harrison Hartle; D. J. Nicolsky; Efim Pelinovsky; Amir Raz; Alexei Rybkin

2.9 billion for RCP8.5 and


Geophysical Research Letters | 2016

Evidence for shallow megathrust slip across the Unalaska seismic gap during the great 1957 Andreanof Islands earthquake, eastern Aleutian Islands, Alaska

D. J. Nicolsky; Jeffrey T. Freymueller; Robert C. Witter; E. N. Suleimani; R. D. Koehler

2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80–100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.


Pure and Applied Geophysics | 2013

Note on the 1964 Alaska Tsunami Generation by Horizontal Displacements of Ocean Bottom. Numerical Modeling of the Runup in Chenega Cove, Alaska

D. J. Nicolsky; Elena Suleimani; Roger Hansen

We perform numerical simulations to assess how coastal tsunami hazard from submarine mass failures (SMFs) is affected by slide kinematics and rheology. Two types of two-layer SMF tsunami generation models are used, in which the bottom (slide) layer is depth-integrated and represented by either a dense Newtonian fluid or a granular flow, in which inter-granular stresses are governed by Coulomb friction (Savage and Hutter model). In both cases, the upper (water) layer flow is simulated with the non-hydrostatic 3D σ-layer model NHWAVE. Both models are validated by simulating laboratory experiments for SMFs made of glass beads moving down a steep plane slope. In those, we assess the convergence of results (i.e., SMF motion and surface wave generation) with model parameters and their sensitivity to slide parameters (i.e., viscosity, bottom friction, and initial submergence). The historical Currituck SMF is simulated with the viscous slide model, to estimate relevant parameters for simulating tsunami generation from a possible SMF sited near the Hudson River Canyon. Compared to a rigid slump, we find that deforming SMFs of various rheology, despite having a slightly larger initial acceleration, generate a smaller tsunami due to their spreading and thinning out during motion, which gradually makes them less tsunamigenic; the latter behavior is controlled by slide rheology. Coastal tsunami hazard is finally assessed by performing tsunami simulations with the Boussinesq long wave model FUNWAVE-TVD, initialized by SMF tsunami sources, in nested grids of increasing resolution. While initial tsunami elevations are very large (up to 25 m for the rigid slump), nearshore tsunami elevations are significantly reduced in all cases (to a maximum of 6.5 m). However, at most nearshore locations, surface elevations obtained assuming a rigid slump are up to a factor of 2 larger than those obtained for deforming slides. We conclude that modeling SMFs as rigid slumps provides a conservative estimate of coastal tsunami hazard while using a more realistic rheology, in general, reduces coastal tsunami impact.

Collaboration


Dive into the D. J. Nicolsky's collaboration.

Top Co-Authors

Avatar

Vladimir E. Romanovsky

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

David M. Lawrence

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Sergey S. Marchenko

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Elena Suleimani

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Elchin Jafarov

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. S. Tipenko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. David McGuire

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Alexei Rybkin

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge