Elda Favari
University of Parma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elda Favari.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2004
Elda Favari; Ilaria Zanotti; Francesca Zimetti; Nicoletta Ronda; Franco Bernini; George H. Rothblat
Objective—ATP-binding cassette transporter A1 (ABCA1) mediates the efflux of lipids from cells to lipid-poor apolipoproteins. In this article, we characterize the effect of probucol on cellular ABCA1-mediated lipid efflux. Methods and Results—Probucol inhibited cholesterol efflux up to 80% in J774 macrophages expressing ABCA1. In Fu5AH hepatoma cells that contain scavenger receptor class B, type I, but not functional ABCA1, we observed no effect of probucol on cholesterol efflux. Probucol inhibited cholesterol efflux from normal human skin fibroblasts but not from fibroblasts from a Tangier patient. Fluorescent confocal microscopy and biotinylation assay demonstrated that in J774 cells probucol impaired the translocation of ABCA1 from intracellular compartments to the plasma membrane. Probucol also inhibited the formation of an ABCA1-linked cholesterol oxidase sensitive plasma membrane domain. Consistent with the inhibitory effect on ABCA1 translocation to the plasma membrane, probucol reduced cell surface–specific [125I]-labeled apolipoprotein-AI binding. Conclusions—We conclude that probucol is an effective inhibitor of ABCA1-mediated cholesterol efflux without influencing scavenger receptor class B type I–mediated efflux. The inhibition of ABCA1 translocation to the plasma membrane may in part explain the reported in vivo high-density lipoprotein–lowering action of probucol.
Biochemistry | 2009
Elda Favari; Laura Calabresi; Maria Pia Adorni; Wendy Jessup; Sara Simonelli; Guido Franceschini; Franco Bernini
The aim of this study was to correlate the lipid content and size of discoidal reconstituted HDL particles with their ability to promote cellular cholesterol efflux. Homogeneous discoidal rHDL particles containing apoA-I and POPC, with diameters of 7.8, 9.6, 10.8, 12.5, and 17.0 nm, were prepared by the cholate dialysis technique. Cholesterol efflux to rHDL was evaluated in pathway-specific cell models for ABCA1-, ABCG1-, and SR-BI-mediated efflux. ABCA1-mediated efflux was efficiently promoted by the 7.8 nm rHDL containing 82 POPC molecules per particle. This rHDL also promoted ABCG1, but not SR-BI, cholesterol efflux. All large and lipid-rich rHDLs, with a diameter of >or=9.6 nm and a phospholipid content of >/=202 molecules per particle, promoted both SR-BI- and ABCG1-mediated efflux. Our results indicated that the ABCA1-mediated cell cholesterol efflux can be efficiently driven not only by monomolecular lipid free/poor apoA-I but also by a small discoidal phospholipid-containing particle resembling plasma pre-beta1 HDL. This same particle also promotes ABCG1- but not SR-BI-mediated efflux. These results help to clarify the role of plasma pre-beta1 HDL in reverse cholesterol transport.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2005
MyNgan Duong; Heidi L. Collins; Weijun Jin; Ilaria Zanotti; Elda Favari; George H. Rothblat
Objectives—Cholesterol efflux is achieved by several mechanisms. This study examines contributions of these pathways to efflux to human serum. Methods and Results—Human fibroblasts were stably transfected with SR-BI while ABCA1 was upregulated. Quantitation of cholesterol efflux to human serum demonstrated that there was efflux from cells without either protein. Expression of ABCA1 produced a small increase in efflux, whereas SR-BI expression had a dramatic impact. To quantitate ABCA1 and SR-BI contribution, fibroblasts were pretreated with Probucol and BLT-1 to, respectively, inhibit these efflux proteins. Exposing SR-BI–expressing fibroblasts to BLT-1 inhibited efflux by 67%. Probucol pretreatment of ABCA1-expressing fibroblasts reduced efflux to serum by 26%. A large fraction of total efflux was uninhibited. For both J774 and mouse peritoneal macrophages, contributions of either ABCA1 or SR-BI to efflux to serum were low, with background/uninhibited efflux contributing from 70% to 90% of total efflux. Conclusions—We have shown that ABCA1-mediated efflux to serum responds to the pool of lipid-free/poor apolipoproteins, whereas phospholipid-containing particles mediate SR-BI efflux. Although SR-BI and ABCA1 contribute to efflux from fibroblasts and cholesterol-enriched macrophages, a large proportion of the total efflux to human serum is mediated by a mechanism that is neither SR-BI nor ABCA1.
Journal of Biological Chemistry | 2007
Elda Favari; Monica Gomaraschi; Ilaria Zanotti; Franco Bernini; Miriam Lee-Rueckert; Petri T. Kovanen; Cesare R. Sirtori; Guido Franceschini; Laura Calabresi
Carriers of the apolipoprotein A-IMilano (A-IM) variant present with severe reductions of plasma HDL levels, not associated with premature coronary heart disease (CHD). Sera from 14 A-IM carriers and matched controls were compared for their ability to promote ABCA1-driven cholesterol efflux from J774 macrophages and human fibroblasts. When both cell types are stimulated to express ABCA1, the efflux of cholesterol through this pathway is greater with A-IM than control sera (3.4 ± 1.0% versus 2.3 ± 1.0% in macrophages; 5.2 ± 2.4% versus 1.9 ± 0.1% in fibroblasts). A-IM and control sera are instead equally effective in removing cholesterol from unstimulated cells and from fibroblasts not expressing ABCA1. The A-IM sera contain normal amounts of apoA-I-containing preβ-HDL and varying concentrations of a unique small HDL particle containing a single molecule of the A-IM dimer; chymase treatment of serum degrades both particles and abolishes ABCA1-mediated cholesterol efflux. The serum content of chymase-sensitive HDL correlates strongly and significantly with ABCA1-mediated cholesterol efflux (r = 0.542, p = 0.004). The enhanced capacity of A-IM serum for ABCA1 cholesterol efflux is thus explained by the combined occurrence in serum of normal amounts of apoA-I-containing preβ-HDL, together with a unique protease-sensitive, small HDL particle containing the A-IM dimer, both effective in removing cell cholesterol via ABCA1.
Annals of the Rheumatic Diseases | 2014
Nicoletta Ronda; Elda Favari; Maria Orietta Borghi; Francesca Ingegnoli; Maria Gerosa; Cecilia Beatrice Chighizola; F. Zimetti; Maria Pia Adorni; Franco Bernini; Pier Luigi Meroni
Objectives The marked cardiovascular risk in autoimmune diseases is only partly explained. The capacity of high-density lipoproteins (HDL) to promote cell cholesterol efflux is a property with a well-known anti-atherogenic significance, but is also involved in functional modulation of endothelial and immune cells. The aim of this work was to evaluate HDL functionality with respect to cell cholesterol efflux in rheumatoid arthritis (RA) and systemic lupus erythemathosus (SLE) patients. Methods We evaluated serum cholesterol efflux capacity (CEC) of apoB-depleted serum, which mainly reflects HDL activity, from 30 RA and 30 SLE patients, and from 30 healthy controls by radioisotopic ex-vivo systems discriminating between the specific pathways of cholesterol efflux. Results RA patients presented impairment of ATP-binding cassette G1-mediated CEC that correlated with disease activity. SLE patients showed a more complex pattern of modifications unrelated to disease activity, with marked reduction of ATP-binding cassette G1-mediated CEC and impairment of ATP-binding cassette A1-mediated CEC. The relationship between specific pathways of CEC values and serum total HDL differed between groups and there was no relationship with autoantibody profile or current therapy. Conclusions CEC is impaired in RA and SLE, with a specific mechanism pattern in each disease not depending on serum HDL levels. These findings provide a new mechanism for the increased atherosclerotic risk in RA and SLE patients.
Circulation-cardiovascular Genetics | 2012
Livia Pisciotta; Elda Favari; Lucia Magnolo; Sara Simonelli; Maria Pia Adorni; R. Sallo; Tatiana Fancello; Ivana Zavaroni; Diego Ardigò; Franco Bernini; Laura Calabresi; Guido Franceschini; Patrizia Tarugi; Sebastiano Calandra; Stefano Bertolini
Background— Angiopoietin-like protein 3 (ANGPTL3) affects lipid metabolism by inhibiting the activity of lipoprotein and endothelial lipases. Angptl3 knockout mice have marked hypolipidemia, and heterozygous carriers of ANGPLT3, loss-of-function mutations were found among individuals in the lowest quartile of plasma triglycerides in population studies. Recently, 4 related individuals with primary hypolipidemia were found to be compound heterozygotes for ANGPTL3 loss-of-function mutations. Methods and Results— We resequenced ANGPTL3 in 4 members of 3 kindreds originally identified for very low levels of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol (0.97±0.16 and 0.56±0.20 mmol/L, respectively) in whom no mutations of known candidate genes for monogenic hypobetalipoproteinemia and hypoalphalipoproteinemia had been detected. These subjects were found to be homozygous or compound heterozygous for ANGPTL3 loss-of-function mutations (p.G400VfsX5, p.I19LfsX22/p.N147X) associated with the absence of ANGPTL3 in plasma. They had reduced plasma levels of triglyceride-containing lipoproteins and of HDL particles that contained only apolipoprotein A-I and pre-&bgr;–high-density lipoprotein. In addition, their apolipoprotein B–depleted sera had a reduced capacity to promote cell cholesterol efflux through the various pathways (ABCA1-, SR-BI–, and ABCG1-mediated efflux); however, these subjects had no clinical evidence of accelerated atherosclerosis. Heterozygous carriers of the ANGPTL3 mutations had low plasma ANGPTL3 and moderately reduced low-density lipoprotein cholesterol (2.52±0.38 mmol/L) but normal plasma high-density lipoprotein cholesterol. Conclusions— Complete ANGPTL3 deficiency caused by loss-of-function mutations of ANGPTL3 is associated with a recessive hypolipidemia characterized by a reduction of apolipoprotein B and apolipoprotein A-I–containing lipoproteins, changes in subclasses of high-density lipoprotein, and reduced cholesterol efflux potential of serum. Partial ANGPTL3 deficiency is associated only with a moderate reduction of low-density lipoprotein.
Atherosclerosis | 2009
Laura Calabresi; Elda Favari; Elsa Moleri; Maria Pia Adorni; Matteo Pedrelli; Sara Costa; Wendy Jessup; Ingrid C. Gelissen; Petri T. Kovanen; Franco Bernini; Guido Franceschini
OBJECTIVES To evaluate the capacity of serum from carriers of LCAT gene mutations to promote cell cholesterol efflux through the ABCA1, ABCG1, and SR-BI pathways. METHODS Serum was obtained from 41 carriers of mutant LCAT alleles (14 carriers of two mutant LCAT alleles and 27 heterozygotes) and 10 non-carrier relatives (controls). The capacity of serum to promote cholesterol efflux was tested in pathway-specific cell models. RESULTS LCAT deficient sera were significantly more efficient than control sera in promoting cell cholesterol efflux via ABCA1 (3.1+/-0.3% for carriers of two mutant LCAT alleles and 2.6+/-0.2% for heterozygotes vs. 1.5+/-0.4% for controls), and less efficient in promoting ABCG1- and SR-BI-mediated cholesterol efflux. The enhanced capacity of LCAT deficient serum for ABCA1 efflux is explained by the increased content of prebeta-HDL, as indicated by the significant positive correlation between ABCA1 efflux and serum prebeta-HDL content (R=0.468, P<0.001). Moreover, chymase treatment of LCAT deficient serum selectively degraded prebeta-HDL and completely abolished ABCA1 efflux. Despite the remarkable reductions in serum HDL levels, LCAT deficient sera were as effective as control sera in removing mass cholesterol from cholesterol-loaded macrophages. CONCLUSIONS Serum from carriers of LCAT gene mutations has the same capacity of control serum to decrease the cholesterol content of cholesterol-loaded macrophages due to a greater cholesterol efflux capacity via ABCA1.
Arthritis & Rheumatism | 2015
Nicoletta Ronda; D. Greco; Maria Pia Adorni; F. Zimetti; Elda Favari; Gunnbjorg Hjeltnes; Knut Mikkelsen; Maria Orietta Borghi; Ennio Giulio Favalli; Rita Gatti; Ivana Hollan; Pier Luigi Meroni; Franco Bernini
Rheumatoid arthritis (RA) is associated with accelerated atherosclerosis. The reduction in cardiovascular risk that is induced by methotrexate (MTX) and anti–tumor necrosis factor α agents in RA is considered secondary to their anti‐inflammatory action, but their effects on serum lipoprotein function and foam cell formation are unknown. The reduced capacity of high‐density lipoprotein (HDL) to promote cell cholesterol efflux and the increased serum cell cholesterol‐loading capacity (CLC) demonstrated in RA may contribute to foam cell development. The aim of this study was to investigate the influence of MTX and adalimumab treatment on serum cholesterol efflux capacity (CEC) and CLC in RA patients and to study the in vitro effects of the two drugs on macrophage cholesterol handling.
Journal of Lipid Research | 2008
Ilaria Zanotti; Francesco Potì; Matteo Pedrelli; Elda Favari; Elsa Moleri; Guido Franceschini; Laura Calabresi; Franco Bernini
The liver X receptors (LXRs) have been shown to affect lipoprotein plasma profile, lipid metabolism, and reverse cholesterol transport (RCT). In the present study, we investigated whether a short-term administration of the synthetic LXR agonist T0901317 (T0) to mice may affect RCT by modulating the capacity of plasma to promote cellular lipid efflux. Consistent with previous data, the pharmacological treatment of mice caused a significant increase of macrophage-derived [3H]cholesterol content in plasma, liver, and feces and resulted in improved capacity of plasma to promote cellular cholesterol release through passive diffusion and scavenger receptor class B type I (SR-BI)-mediated mechanisms. Differently, plasma from treated mice possessed similar or reduced capacity to drive lipid efflux via ABCA1. Consistent with these data, the analysis of plasma HDL fractions revealed that T0 caused the formation of larger, lipid-enriched particles. These results suggest that T0 promotes in vivo RCT from macrophages at least in part by inducing an enrichment of those HDL subclasses that increase plasma capacity to promote cholesterol efflux by passive diffusion and SR-BI-mediated mechanisms.
Handbook of experimental pharmacology | 2015
Elda Favari; Angelika Chroni; Uwe J. F. Tietge; Ilaria Zanotti; Joan Carles Escolà-Gil; Franco Bernini
Both alterations of lipid/lipoprotein metabolism and inflammatory events contribute to the formation of the atherosclerotic plaque, characterized by the accumulation of abnormal amounts of cholesterol and macrophages in the artery wall. Reverse cholesterol transport (RCT) may counteract the pathogenic events leading to the formation and development of atheroma, by promoting the high-density lipoprotein (HDL)-mediated removal of cholesterol from the artery wall. Recent in vivo studies established the inverse relationship between RCT efficiency and atherosclerotic cardiovascular diseases (CVD), thus suggesting that the promotion of this process may represent a novel strategy to reduce atherosclerotic plaque burden and subsequent cardiovascular events. HDL plays a primary role in all stages of RCT: (1) cholesterol efflux, where these lipoproteins remove excess cholesterol from cells; (2) lipoprotein remodeling, where HDL undergo structural modifications with possible impact on their function; and (3) hepatic lipid uptake, where HDL releases cholesterol to the liver, for the final excretion into bile and feces. Although the inverse association between HDL plasma levels and CVD risk has been postulated for years, recently this concept has been challenged by studies reporting that HDL antiatherogenic functions may be independent of their plasma levels. Therefore, assessment of HDL function, evaluated as the capacity to promote cell cholesterol efflux may offer a better prediction of CVD than HDL levels alone. Consistent with this idea, it has been recently demonstrated that the evaluation of serum cholesterol efflux capacity (CEC) is a predictor of atherosclerosis extent in humans.