Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleanor R. Gray is active.

Publication


Featured researches published by Eleanor R. Gray.


Retrovirology | 2010

Disease-associated XMRV sequences are consistent with laboratory contamination

Stéphane Hué; Eleanor R. Gray; Astrid Gall; Aris Katzourakis; Choon Ping Tan; Charlotte J. Houldcroft; Stuart McLaren; Deenan Pillay; Andrew Futreal; Jeremy A. Garson; Oliver G. Pybus; Paul Kellam; Greg J. Towers

BackgroundXenotropic murine leukaemia viruses (MLV-X) are endogenous gammaretroviruses that infect cells from many species, including humans. Xenotropic murine leukaemia virus-related virus (XMRV) is a retrovirus that has been the subject of intense debate since its detection in samples from humans with prostate cancer (PC) and chronic fatigue syndrome (CFS). Controversy has arisen from the failure of some studies to detect XMRV in PC or CFS patients and from inconsistent detection of XMRV in healthy controls.ResultsHere we demonstrate that Taqman PCR primers previously described as XMRV-specific can amplify common murine endogenous viral sequences from mouse suggesting that mouse DNA can contaminate patient samples and confound specific XMRV detection. To consider the provenance of XMRV we sequenced XMRV from the cell line 22Rv1, which is infected with an MLV-X that is indistinguishable from patient derived XMRV. Bayesian phylogenies clearly show that XMRV sequences reportedly derived from unlinked patients form a monophyletic clade with interspersed 22Rv1 clones (posterior probability >0.99). The cell line-derived sequences are ancestral to the patient-derived sequences (posterior probability >0.99). Furthermore, pol sequences apparently amplified from PC patient material (VP29 and VP184) are recombinants of XMRV and Moloney MLV (MoMLV) a virus with an envelope that lacks tropism for human cells. Considering the diversity of XMRV we show that the mean pairwise genetic distance among env and pol 22Rv1-derived sequences exceeds that of patient-associated sequences (Wilcoxon rank sum test: p = 0.005 and p < 0.001 for pol and env, respectively). Thus XMRV sequences acquire diversity in a cell line but not in patient samples. These observations are difficult to reconcile with the hypothesis that published XMRV sequences are related by a process of infectious transmission.ConclusionsWe provide several independent lines of evidence that XMRV detected by sensitive PCR methods in patient samples is the likely result of PCR contamination with mouse DNA and that the described clones of XMRV arose from the tumour cell line 22Rv1, which was probably infected with XMRV during xenografting in mice. We propose that XMRV might not be a genuine human pathogen.


PLOS ONE | 2011

Specific Capture and Whole-Genome Sequencing of Viruses from Clinical Samples

Daniel P. Depledge; Anne L. Palser; Simon J. Watson; Imogen Yi-Chun Lai; Eleanor R. Gray; Paul Grant; Ravinder K. Kanda; Emily LeProust; Paul Kellam; Judith Breuer

Whole genome sequencing of viruses directly from clinical samples is integral for understanding the genetics of host-virus interactions. Here, we report the use of sample sparing target enrichment (by hybridisation) for viral nucleic acid separation and deep-sequencing of herpesvirus genomes directly from a range of clinical samples including saliva, blood, virus vesicles, cerebrospinal fluid, and tumour cell lines. We demonstrate the effectiveness of the method by deep-sequencing 13 highly cell-associated human herpesvirus genomes and generating full length genome alignments at high read depth. Moreover, we show the specificity of the method enables the study of viral population structures and their diversity within a range of clinical samples types.


Molecular Biology and Evolution | 2014

Deep sequencing of viral genomes provides insight into the evolution and pathogenesis of varicella zoster virus and its vaccine in humans

Daniel P. Depledge; Samit Kundu; Nancy J. Jensen; Eleanor R. Gray; Meleri Jones; Sharon Steinberg; Anne A. Gershon; Paul R. Kinchington; D. Scott Schmid; Francois Balloux; Richard A. Nichols; Judith Breuer

Immunization with the vOka vaccine prevents varicella (chickenpox) in children and susceptible adults. The vOka vaccine strain comprises a mixture of genotypes and, despite attenuation, causes rashes in small numbers of recipients. Like wild-type virus, the vaccine establishes latency in neuronal tissue and can later reactivate to cause Herpes zoster (shingles). Using hybridization-based methodologies, we have purified and sequenced vOka directly from skin lesions. We show that alleles present in the vaccine can be recovered from the lesions and demonstrate the presence of a severe bottleneck between inoculation and lesion formation. Genotypes in any one lesion appear to be descended from one to three vaccine-genotypes with a low frequency of novel mutations. No single vOka haplotype and no novel mutations are consistently present in rashes, indicating that neither new mutations nor recombination with wild type are critical to the evolution of vOka rashes. Instead, alleles arising from attenuation (i.e., not derived from free-living virus) are present at lower frequencies in rash genotypes. We identify 11 loci at which the ancestral allele is selected for in vOka rash formation and show genotypes in rashes that have reactivated from latency cannot be distinguished from rashes occurring immediately after inoculation. We conclude that the vOka vaccine, although heterogeneous, has not evolved to form rashes through positive selection in the mode of a quasispecies, but rather alleles that were essentially neutral during the vaccine production have been selected against in the human subjects, allowing us to identify key loci for rash formation.


PLOS ONE | 2011

No Evidence of XMRV or Related Retroviruses in a London HIV-1-Positive Patient Cohort

Eleanor R. Gray; Jeremy A. Garson; Judith Breuer; Simon Edwards; Paul Kellam; Deenan Pillay; Greg J. Towers

Background Several studies have implicated a recently discovered gammaretrovirus, XMRV (Xenotropic murine leukaemia virus-related virus), in chronic fatigue syndrome and prostate cancer, though whether as causative agent or opportunistic infection is unclear. It has also been suggested that the virus can be found circulating amongst the general population. The discovery has been controversial, with conflicting results from attempts to reproduce the original studies. Methodology/Principal Findings We extracted peripheral blood DNA from a cohort of 540 HIV-1-positive patients (approximately 20% of whom have never been on anti-retroviral treatment) and determined the presence of XMRV and related viruses using TaqMan PCR. While we were able to amplify as few as 5 copies of positive control DNA, we did not find any positive samples in the patient cohort. Conclusions/Significance In view of these negative findings in this highly susceptible group, we conclude that it is unlikely that XMRV or related viruses are circulating at a significant level, if at all, in HIV-1-positive patients in London or in the general population.


Frontiers in Immunology | 2015

Dynamic Perturbations of the T-Cell Receptor Repertoire in Chronic HIV Infection and following Antiretroviral Therapy.

James M. Heather; Katharine Best; Theres Oakes; Eleanor R. Gray; Jennifer Roe; Niclas Thomas; Nir Friedman; Mahdad Noursadeghi; Benjamin M. Chain

HIV infection profoundly affects many parameters of the immune system and ultimately leads to AIDS, yet which factors are most important for determining resistance, pathology, and response to antiretroviral treatment – and how best to monitor them – remain unclear. We develop a quantitative high-throughput sequencing pipeline to characterize the TCR repertoires of HIV-infected individuals before and after antiretroviral therapy, working from small, unfractionated samples of peripheral blood. This reveals the TCR repertoires of HIV+ individuals to be highly perturbed, with considerably reduced diversity as a small proportion of sequences are highly overrepresented. HIV also causes specific qualitative changes to the repertoire including an altered distribution of V gene usage, depletion of public TCR sequences, and disruption of TCR networks. Short-term antiretroviral therapy has little impact on most of the global damage to repertoire structure, but is accompanied by rapid changes in the abundance of many individual TCR sequences, decreases in abundance of the most common sequences, and decreases in the majority of HIV-associated CDR3 sequences. Thus, high-throughput repertoire sequencing of small blood samples that are easy to take, store, and process can shed light on various aspects of the T-cell immune compartment and stands to offer insights into patient stratification and immune reconstitution.


Journal of Virology | 2014

Evolution of Cocirculating Varicella-Zoster Virus Genotypes during a Chickenpox Outbreak in Guinea-Bissau

Daniel P. Depledge; Eleanor R. Gray; Samit Kundu; S Cooray; Anja Poulsen; Peter Aaby; Judith Breuer

ABSTRACT Varicella-zoster virus (VZV), a double-stranded DNA alphaherpesvirus, is associated with seasonal outbreaks of varicella in nonimmunized populations. Little is known about whether these outbreaks are associated with a single or multiple viral genotypes and whether new mutations rapidly accumulate during transmission. Here, we take advantage of a well-characterized population cohort in Guinea-Bissau and produce a unique set of 23 full-length genome sequences, collected over 7 months from eight households. Comparative sequence analysis reveals that four distinct genotypes cocirculated among the population, three of which were present during the first week of the outbreak, although no patients were coinfected, which indicates that exposure to infectious virus from multiple sources is common during VZV outbreaks. Transmission of VZV was associated with length polymorphisms in the R1 repeat region and the origin of DNA replication. In two cases, these were associated with the formation of distinct lineages and point to the possible coevolution of these loci, despite the lack of any known functional link in VZV or related herpesviruses. We show that these and all other sequenced clade 5 viruses possess a distinct R1 repeat motif that increases the acidity of an ORF11p protein domain and postulate that this has either arisen or been lost following divergence of the major clades. Thus, sequencing of whole VZV genomes collected during an outbreak has provided novel insights into VZV biology, transmission patterns, and (recent) natural history. IMPORTANCE VZV is a highly infectious virus and the causative agent of chickenpox and shingles, the latter being particularly associated with the risk of painful complications. Seasonal outbreaks of chickenpox are very common among young children, yet little is known about the dynamics of the virus during person-to-person to transmission or whether multiple distinct viruses seed and/or cocirculate during an outbreak. In this study, we have sequenced chickenpox viruses from an outbreak in Guinea-Bissau that are supported by detailed epidemiological data. Our data show that multiple different virus strains seeded and were maintained throughout the 6-month outbreak period and that viruses transmitted between individuals accumulated new mutations in specific genomic regions. Of particular interest is the potential coevolution of two distinct parts of the genomes and our calculations of the rate of viral mutation, both of which increase our understanding of how VZV evolves over short periods of time in human populations.


ACS Nano | 2017

Platinum Nanocatalyst Amplification: Redefining the Gold Standard for Lateral Flow Immunoassays with Ultrabroad Dynamic Range

Colleen N. Loynachan; Michael R. Thomas; Eleanor R. Gray; Daniel A. Richards; Jeongyun Kim; Benjamin S. Miller; Jennifer Clare Brookes; Shweta Agarwal; Vijay Chudasama; Rachel A. McKendry; Molly M. Stevens

Paper-based lateral flow immunoassays (LFIAs) are one of the most widely used point-of-care (PoC) devices; however, their application in early disease diagnostics is often limited due to insufficient sensitivity for the requisite sample sizes and the short time frames of PoC testing. To address this, we developed a serum-stable, nanoparticle catalyst-labeled LFIA with a sensitivity surpassing that of both current commercial and published sensitivities for paper-based detection of p24, one of the earliest and most conserved biomarkers of HIV. We report the synthesis and characterization of porous platinum core–shell nanocatalysts (PtNCs), which show high catalytic activity when exposed to complex human blood serum samples. We explored the application of antibody-functionalized PtNCs with strategically and orthogonally modified nanobodies with high affinity and specificity toward p24 and established the key larger nanoparticle size regimes needed for efficient amplification and performance in LFIA. Harnessing the catalytic amplification of PtNCs enabled naked-eye detection of p24 spiked into sera in the low femtomolar range (ca. 0.8 pg·mL–1) and the detection of acute-phase HIV in clinical human plasma samples in under 20 min. This provides a versatile absorbance-based and rapid LFIA with sensitivity capable of significantly reducing the HIV acute phase detection window. This diagnostic may be readily adapted for detection of other biomolecules as an ultrasensitive screening tool for infectious and noncommunicable diseases and can be capitalized upon in PoC settings for early disease detection.


Retrovirology | 2011

Binding of more than one Tva800 molecule is required for ASLV-A entry

Eleanor R. Gray; Christopher J. R. Illingworth; John M. Coffin; Jonathan P. Stoye

BackgroundUnderstanding the mechanism by which viruses enter their target cell is an essential part of understanding their infectious cycle. Previous studies have focussed on the multiplicity of viral envelope proteins that need to bind to their cognate receptor to initiate entry. Avian sarcoma and leukosis virus Envelope protein (ASLV Env) mediates entry via a receptor, Tva, which can be attached to the cell surface either by a phospholipid anchor (Tva800) or a transmembrane domain (Tva950). In these studies, we have now investigated the number of target receptors necessary for entry of ASLV Env-pseudotyped virions.ResultsUsing titration and modelling experiments we provide evidence that binding of more than one receptor, probably two, is needed for entry of virions via Tva800. However, binding of just one Tva950 receptor is sufficient for successful entry.ConclusionsThe different modes of attachment of Tva800 and Tva950 to the cell membrane have important implications for the utilisation of these proteins as receptors for viral binding and/or uptake.


ACS Infectious Diseases | 2017

Unravelling the Molecular Basis of High Affinity Nanobodies against HIV p24: In Vitro Functional, Structural, and in Silico Insights.

Eleanor R. Gray; Jennifer Clare Brookes; Christophe Caillat; Valérian Turbé; Benjamin Lucian John Webb; Luke A. Granger; Benjamin S. Miller; Laura E. McCoy; Mohamed El Khattabi; C. Theo Verrips; Robin A. Weiss; Dorothy M. Duffy; Winfried Weissenhorn; Rachel A. McKendry

Preventing the spread of infectious diseases remains an urgent priority worldwide, and this is driving the development of advanced nanotechnology to diagnose infections at the point of care. Herein, we report the creation of a library of novel nanobody capture ligands to detect p24, one of the earliest markers of HIV infection. We demonstrate that these nanobodies, one tenth the size of conventional antibodies, exhibit high sensitivity and broad specificity to global HIV-1 subtypes. Biophysical characterization indicates strong 690 pM binding constants and fast kinetic on-rates, 1 to 2 orders of magnitude better than monoclonal antibody comparators. A crystal structure of the lead nanobody and p24 was obtained and used alongside molecular dynamics simulations to elucidate the molecular basis of these enhanced performance characteristics. They indicate that binding occurs at C-terminal helices 10 and 11 of p24, a negatively charged region of p24 complemented by the positive surface of the nanobody binding interface involving CDR1, CDR2, and CDR3 loops. Our findings have broad implications on the design of novel antibodies and a wide range of advanced biomedical applications.


Scientific Reports | 2017

Towards an ultra-rapid smartphone- connected test for infectious diseases

Valérian Turbé; Eleanor R. Gray; Victoria E. Lawson; Eleni Nastouli; Jennifer Clare Brookes; Robin A. Weiss; Deenan Pillay; Vincent C. Emery; C. Theo Verrips; Hiromi Yatsuda; Dale Athey; Rachel A. McKendry

The development is reported of an ultra-rapid, point-of-care diagnostic device which harnesses surface acoustic wave (SAW) biochips, to detect HIV in a finger prick of blood within 10 seconds (sample-in-result-out). The disposable quartz biochip, based on microelectronic components found in every consumer smartphone, is extremely fast because no complex labelling, amplification or wash steps are needed. A pocket-sized control box reads out the SAW signal and displays results electronically. High analytical sensitivity and specificity are found with model and real patient blood samples. The findings presented here open up the potential of consumer electronics to cut lengthy test waiting times, giving patients on the spot access to potentially life-saving treatment and supporting more timely public health interventions to prevent disease transmission.

Collaboration


Dive into the Eleanor R. Gray's collaboration.

Top Co-Authors

Avatar

Judith Breuer

University College London

View shared research outputs
Top Co-Authors

Avatar

Rachel A. McKendry

London Centre for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Kellam

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Deenan Pillay

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne L. Palser

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Benjamin S. Miller

London Centre for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Greg J. Towers

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge