Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleanor T. Coffey is active.

Publication


Featured researches published by Eleanor T. Coffey.


Nature Neuroscience | 2009

Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin

Gerardo Morfini; YiMei You; Sarah Pollema; Agnieszka Kaminska; Katherine A. Liu; Katsuji Yoshioka; Benny Björkblom; Eleanor T. Coffey; Carolina Bagnato; David K. Han; Chun-Fang Huang; Gary Banker; Gustavo Pigino; Scott T. Brady

Selected vulnerability of neurons in Huntingtons disease suggests that alterations occur in a cellular process that is particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt) inhibits fast axonal transport (FAT) in various cellular and animal models of Huntingtons disease (mouse and squid), but the molecular basis of this effect remains unknown. We found that polyQ-Htt inhibited FAT through a mechanism involving activation of axonal cJun N-terminal kinase (JNK). Accordingly, we observed increased activation of JNK in vivo in cellular and mouse models of Huntingtons disease. Additional experiments indicated that the effects of polyQ-Htt on FAT were mediated by neuron-specific JNK3 and not by ubiquitously expressed JNK1, providing a molecular basis for neuron-specific pathology in Huntingtons disease. Mass spectrometry identified a residue in the kinesin-1 motor domain that was phosphorylated by JNK3 and this modification reduced kinesin-1 binding to microtubules. These data identify JNK3 as a critical mediator of polyQ-Htt toxicity and provide a molecular basis for polyQ-Htt–induced inhibition of FAT.


The Journal of Neuroscience | 2002

c-Jun N-Terminal Protein Kinase (JNK) 2/3 Is Specifically Activated by Stress, Mediating c-Jun Activation, in the Presence of Constitutive JNK1 Activity in Cerebellar Neurons

Eleanor T. Coffey; Giedre Smiciene; Vesa Hongisto; Jiong Cao; Stephan Brecht; Thomas Herdegen

c-Jun is considered a major regulator of both neuronal death and regeneration. Stress in primary cultured CNS neurons induces phosphorylation of c-Jun serines 63 and 73 and increased c-Jun protein. However, total c-Jun N-terminal protein kinase (JNK) activity does not increase, and no satisfactory explanation for this paradox has been available. Here we demonstrate that neuronal stress induces strong activation of JNK2/3 in the presence of constitutively and highly active JNK1. Correspondingly, neurons from JNK1−/−mice show lower constitutive activity and considerably higher responsiveness to stress. p38 activity can be completely inhibited without effect on c-Jun phosphorylation, whereas 10 μmSB203580 strongly inhibits neuronal JNK2/3, stress-induced c-Jun phosphorylation, induced c-Jun activity, and neuronal death in response to trophic withdrawal stress. Neither constitutive JNK1 activity nor total neuronal JNK activity were significantly affected by this concentration of drug. Thus, neuronal stress selectively activates JNK2/3 in the presence of mechanisms maintaining constitutive JNK1 activity, and this JNK2/3 activity selectively targets c-Jun, which is isolated from constitutive JNK1 activity.


The Journal of Neuroscience | 2005

Constitutively Active Cytoplasmic c-Jun N-Terminal Kinase 1 Is a Dominant Regulator of Dendritic Architecture: Role of Microtubule-Associated Protein 2 as an Effector

Benny Björkblom; Nina Östman; Vesa Hongisto; Vladislav Komarovski; Jan-Jonas Filén; Tuula A. Nyman; Tuula Kallunki; Eleanor T. Coffey

Normal functioning of the nervous system requires precise regulation of dendritic shape and synaptic connectivity. Here, we report a severe impairment of dendritic structures in the cerebellum and motor cortex of c-Jun N-terminal kinase 1 (JNK1)-deficient mice. Using an unbiased screen for candidate mediators, we identify the dendrite-specific high-molecular-weight microtubule-associated protein 2 (MAP2) as a JNK substrate in the brain. We subsequently show that MAP2 is phosphorylated by JNK in intact cells and that MAP2 proline-rich domain phosphorylation is decreased in JNK1-/- brain. We developed compartment-targeted JNK inhibitors to define whether a functional relationship exists between the physiologically active, cytosolic pool of JNK and dendritic architecture. Using these, we demonstrate that cytosolic, but not nuclear, JNK determines dendritic length and arbor complexity in cultured neurons. Moreover, we confirm that MAP2-dependent process elongation is enhanced after activation of JNK. Using JNK1-/- neurons, we reveal a dominant role for JNK1 over ERK in regulating dendritic arborization, whereas ERK only regulates dendrite shape under conditions in which JNK activity is low (JNK1-/- neurons). These results reveal a novel antagonism between JNK and ERK, potentially providing a mechanism for fine-tuning the dendritic arbor. Together, these data suggest that JNK phosphorylation of MAP2 plays an important role in defining dendritic architecture in the brain.


Journal of Cell Biology | 2006

JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length

Tatsiana Tararuk; Nina Östman; Wenrui Li; Benny Björkblom; Artur Padzik; Justyna Zdrojewska; Vesa Hongisto; Thomas Herdegen; Witold Konopka; Eleanor T. Coffey

c-Jun NH2-terminal kinases (JNKs) are essential during brain development, when they regulate morphogenic changes involving cell movement and migration. In the adult, JNK determines neuronal cytoarchitecture. To help uncover the molecular effectors for JNKs in these events, we affinity purified JNK-interacting proteins from brain. This revealed that the stathmin family microtubule-destabilizing proteins SCG10, SCLIP, RB3, and RB3′ interact tightly with JNK. Furthermore, SCG10 is also phosphorylated by JNK in vivo on sites that regulate its microtubule depolymerizing activity, serines 62 and 73. SCG10-S73 phosphorylation is significantly decreased in JNK1−/− cortex, indicating that JNK1 phosphorylates SCG10 in developing forebrain. JNK phosphorylation of SCG10 determines axodendritic length in cerebrocortical cultures, and JNK site–phosphorylated SCG10 colocalizes with active JNK in embryonic brain regions undergoing neurite elongation and migration. We demonstrate that inhibition of cytoplasmic JNK and expression of SCG10-62A/73A both inhibited fluorescent tubulin recovery after photobleaching. These data suggest that JNK1 is responsible for regulation of SCG10 depolymerizing activity and neurite elongation during brain development.


Molecular and Cellular Biology | 2003

Lithium Blocks the c-Jun Stress Response and Protects Neurons via Its Action on Glycogen Synthase Kinase 3

Vesa Hongisto; Nina Smeds; Stephan Brecht; Thomas Herdegen; Eleanor T. Coffey

ABSTRACT Lithium has been used as an effective mood-stabilizing drug for the treatment of manic episodes and depression for 50 years. More recently, lithium has been found to protect neurons from death induced by a wide array of neurotoxic insults. However, the molecular basis for the prophylactic effects of lithium have remained obscure. A target of lithium, glycogen synthase kinase 3 (GSK-3), is implicated in neuronal death after trophic deprivation. The mechanism whereby GSK-3 exerts its neurotoxic effects is also unknown. Here we show that lithium blocks the canonical c-Jun apoptotic pathway in cerebellar granule neurons deprived of trophic support. This effect is mimicked by the structurally independent inhibitors of GSK-3, FRAT1, and indirubin. Like lithium, these prevent the stress induced c-Jun protein increase and subsequent apoptosis. These events are downstream of c-Jun transactivation, since GSK-3 inhibitors block neuronal death induced by constitutively active c-Jun (Ser/Thr→Asp) and FRAT1 expression inhibits AP1 reporter activity. Consistent with this, AP1-dependent expression of proapoptotic Bim requires GSK-3-like activity. These data suggest that a GSK-3-like kinase acts in tandem with c-Jun N-terminal kinase to coordinate the full execution of the c-Jun stress response and neuronal death in response to trophic deprivation.


Nature Neuroscience | 2007

Rho mediates calcium-dependent activation of p38|[alpha]| and subsequent excitotoxic cell death

Maria M. Semenova; Anu M J Mäki-Hokkonen; Jiong Cao; Vladislav Komarovski; K Marjut Forsberg; Milla Koistinaho; Eleanor T. Coffey

Excitotoxic neuronal death contributes to many neurological disorders, and involves calcium influx and stress-activated protein kinases (SAPKs) such as p38α. There is indirect evidence that the small Rho-family GTPases Rac and cdc42 are involved in neuronal death subsequent to the withdrawal of nerve growth factor (NGF), whereas Rho is involved in the inhibition of neurite regeneration and the release of the amyloidogenic Aβ42 peptide. Here we show that Rho is activated in rat neurons by conditions that elevate intracellular calcium and in the mouse cerebral cortex during ischemia. Rho is required for the rapid glutamate-induced activation of p38α and ensuing neuronal death. The ability of RhoA to activate p38α was not expected, and it was specific to primary neuronal cultures. The expression of active RhoA alone not only activated p38α but also induced neuronal death that was sensitive to the anti-apoptotic protein Bcl-2, showing that RhoA was sufficient to induce the excitotoxic pathway. Therefore, Rho is an essential component of the excitotoxic cell death pathway.


Journal of Cell Science | 2008

IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration

Lars Dan Johansen; Tiina Naumanen; Astrid Knudsen; Nina Westerlund; Irina Gromova; Melissa R. Junttila; Christina Nielsen; Trine Bøttzauw; Aviva M. Tolkovsky; Jukka Westermarck; Eleanor T. Coffey; Marja Jäättelä; Tuula Kallunki

Loss-of-function mutations in the IKBKAP gene, which encodes IKAP (ELP1), cause familial dysautonomia (FD), with defective neuronal development and maintenance. Molecular mechanisms leading to FD are poorly understood. We demonstrate that various RNA-interference-based depletions of IKAP lead to defective adhesion and migration in several cell types, including rat primary neurons. The defects could be rescued by reintroduction of wild-type IKAP but not by FD-IKAP, a truncated form of IKAP constructed according to the mutation found in the majority of FD patients. Cytosolic IKAP co-purified with proteins involved in cell migration, including filamin A, which is also involved in neuronal migration. Immunostaining of IKAP and filamin A revealed a distinct co-localization of these two proteins in membrane ruffles. Depletion of IKAP resulted in a significant decrease in filamin A localization in membrane ruffles and defective actin cytoskeleton organization, which both could be rescued by the expression of wild-type IKAP but not by FD-IKAP. No downregulation in the protein levels of paxillin or beclin 1, which were recently described as specific transcriptional targets of IKAP, was detected. These results provide evidence for the role of the cytosolic interactions of IKAP in cell adhesion and migration, and support the notion that cell-motility deficiencies could contribute to FD.


Nature Neuroscience | 2011

Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate

Nina Westerlund; Justyna Zdrojewska; Artur Padzik; Emilia Komulainen; Benny Björkblom; Emmy Rannikko; Tanya Tararuk; Cristina García-Frigola; Jouko Sandholm; Laurent Nguyen; Tuula Kallunki; Michael J. Courtney; Eleanor T. Coffey

Cell migration is the consequence of the sum of positive and negative regulatory mechanisms. Although appropriate migration of neurons is a principal feature of brain development, the negative regulatory mechanisms remain obscure. We found that JNK1 was highly active in developing cortex and that selective inhibition of JNK in the cytoplasm markedly increased both the frequency of exit from the multipolar stage and radial migration rate and ultimately led to an ill-defined cellular organization. Moreover, regulation of multipolar-stage exit and radial migration in Jnk1−/− (also known as Mapk8) mice, resulted from consequential changes in phosphorylation of the microtubule regulator SCG10 (also called stathmin-2). Expression of an SCG10 mutant that mimics the JNK1-phosphorylated form restored normal migration in the brains of Jnk1−/− mouse embryos. These findings indicate that the phosphorylation of SCG10 by JNK1 is a fundamental mechanism that governs the transition from the multipolar stage and the rate of neuronal cell movement during cortical development.


Journal of Biological Chemistry | 2008

All JNKs Can Kill, but Nuclear Localization Is Critical for Neuronal Death

Benny Björkblom; Jenni C. Vainio; Vesa Hongisto; Thomas Herdegen; Michael Courtney; Eleanor T. Coffey

JNKs are implicated in a range of brain pathologies and receive considerable attention as potential therapeutic targets. However, JNKs also regulate physiological and homeostatic processes. An attractive hypothesis from the drug development perspective is that distinct JNK isoforms mediate “physiological” and “pathological” responses. However, this lacks experimental evaluation. Here we investigate the isoforms, subcellular pools, and c-Jun/ATF2 targets of JNK in death of central nervous system neurons following withdrawal of trophic support. We use gene knockouts, gene silencing, subcellularly targeted dominant negative constructs, and pharmacological inhibitors. Combined small interfering RNA knockdown of all JNKs 1, 2, and 3, provides substantial neuroprotection. In contrast, knockdown or knock-out of individual JNKs or two JNKs together does not protect. This explains why the evidence for JNK in neuronal death has to date been largely pharmacological. Complete knockdown of c-Jun and ATF2 using small interfering RNA also fails to protect, casting doubt on c-Jun as a critical effector of JNK in neuronal death. Nonetheless, the death requires nuclear but not cytosolic JNK activity as nuclear dominant negative inhibitors of JNK protect, whereas cytosolic inhibitors only block physiological JNK function. Thus any one of the three JNKs is capable of mediating apoptosis and inhibition of nuclear JNK is protective.


Journal of Cell Biology | 2011

Competitive binding of Rab21 and p120RasGAP to integrins regulates receptor traffic and migration

Anja Mai; Stefan Veltel; Teijo Pellinen; Artur Padzik; Eleanor T. Coffey; Varpu Marjomäki; Johanna Ivaska

P120RasGAP competes with Rab21 for binding to the cytoplasmic domain of integrin α-subunits, thereby promoting receptor escape from early endosomes and recycling to the plasma membrane.

Collaboration


Dive into the Eleanor T. Coffey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Artur Padzik

Åbo Akademi University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuula Kallunki

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge